AofA Strings and Tries Q&A 1

Q. OGF for number of bitstrings not containing 01010?

constructions	$E + (Z_0 + Z_1) \times B = B + P$
	$Z_{01010} \times B = P + Z_{01} \times P + Z_{0101} \times P$
GF equations	$1 + 2zB(z) = B(z) + P(z)$ $z^{5}B(z) = (1 + z^{2} + z^{4})P(z)$

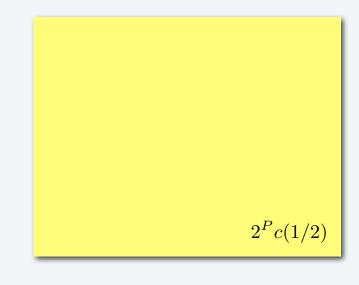
explicit form
$$B(z) = \frac{1 + z^2 + z^4}{z^5 + (1 - 2z)(1 + z^2 + z^4)}$$

I

AofA Strings and Tries Q&A 2

Q. Rank these patterns by expected wait time in a random bit string.

00000	62
00001	32
01000	34
01010	36
10101	36



AofA Words and Mappings Q&A 1

Q. Find the probability that a random mapping has no singleton cycles.

constructions $C = Z \star SET(C)$ $M = SET(CYC_{>1}(C))$ $C(z) = ze^{C(z)} \qquad M(z) = \exp\left(\ln\frac{1}{1 - C(z)} - C(z)\right) = \frac{e^{-C(z)}}{1 - C(z)}$ **EGF** equations coefficients via Lagrange inversion Lagrange Inversion Theorem (Bürmann form). If a GF $g(z) = \sum_{n \ge 1} g_n z^n$ satisfies the equation z = f(g(z))NOT AN EXAM QUESTION (too much calculation) with f(0) = 0 and $f'(0) \neq 0$ then, for any function H(u), $[z^{n}]H(g(z)) = \frac{1}{n} [u^{n-1}]H'(u) \left(\frac{u}{f(u)}\right)^{n}$ asymptotic result

AofA Words and Mappings Q&A 1 (improved)

Q. Give the EGF for random mappings with no singleton cycles. Express your answer as a function of the Cayley function $C(z) = ze^{C(z)}$

constructions $C = Z \star SET(C)$ $M = SET(CYC_{>1}(C))$ EGF equations $C(z) = ze^{C(z)}$ $M(z) = \exp\left(\ln\frac{1}{1-C(z)} - C(z)\right)$ $= \frac{e^{-C(z)}}{1-C(z)}$

AofA Words and Mappings Q&A 1 (another version)

- Q. Find the probability that a *random mapping has no singleton cycles*. *Hint*: Do *not* use generating functions.
- A. Each entry can have any value but its own index, so the number of *N*-mappings with no singleton cycles is $(N-1)^N$

$$\frac{(N-1)^N}{N^N} = \left(1 - \frac{1}{N}\right)^N$$
$$\sim \frac{1}{e}$$

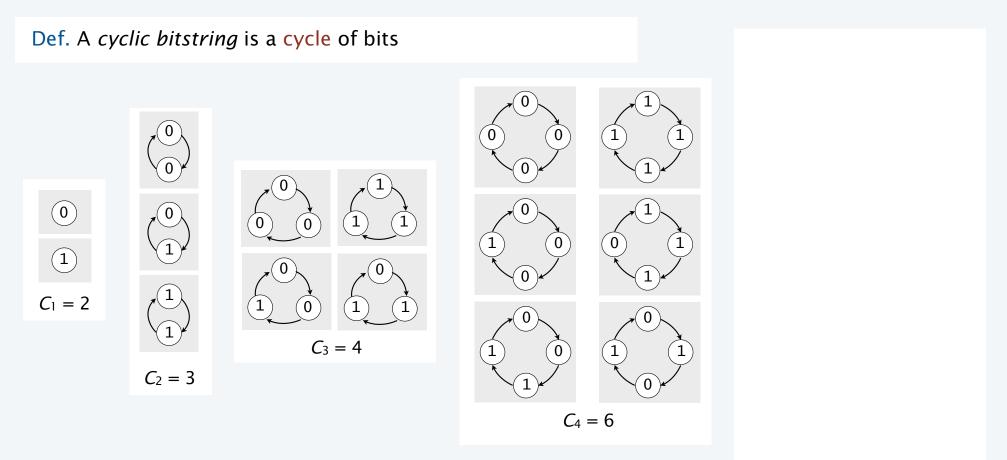
Related problems (stay tuned)

Q. Find the probability that a random mapping has no singleton or doubleton cycles.

EGF probability (asymptotic)
all cycle lengths > 1
$$M_1(z) = \frac{e^{-C(z)}}{1 - C(z)}$$
 e^{-1}
all cycle lengths > 2 $M_2(z) = \frac{e^{-C(z) - C(z)^2/2}}{1 - C(z)}$ $e^{-3/2}$

Rigorous proof requires full mechanism of *singularity analysis* in the complex plane (stay tuned)

Q&A example: cyclic bitstrings



Q. How many *N*-bit cyclic bitstrings ?

 $C_{5} = 8$

Q&A example: cyclic bitstrings

Q. How many N-bit cyclic bitstrings ?

One possibility

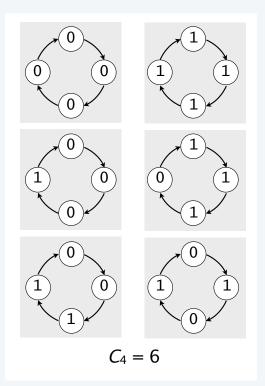
- Solution is "easy".
- Create an exam question with appropriate hints.

Another possibility

- Solution is "difficult" or "complicated".
- Figure out a way to simplify.
- Or, think about a different problem.

Third possibility

- Problem you thought of is a "classic".
- Use OEIS.



THE ON–LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

	A000031 Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of ⁴²⁰
2, 3, 4, 6, 8	output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.
	(Formerly M0564 N0203)
(Greetings from <u>The On-Line Encyclopedia of Integer Sequences</u> !)	<pre>1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602, 27596, 52488, 9980, 190746, 364724, 699252, 1342184, 2581428, 4971068, 9587580, 18512792, 35792568, 69273668, 134219796, 260301176, 505294128, 981706832 (list; graph; refs; listen; history; text; internal format) OFFSET 0,2 COMMENTS Also a(n)-1 is the number of 1's in the truth table for the</pre>
	 Nature, 261 (Jun 10, 1976), 459-467. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).
	 LINKS T. D. Noe and Seiichi Manyama, <u>Table of n. a(n) for n = 03333</u> (first 201 terms from T. D. Noe) Joerg Arndt, <u>Matters Computational (The Fxtbook)</u>, p. 151, pp. 379-383. P. J. Cameron, <u>Sequences realized by oligomorphic permutation groups</u>, J. Integ. Segs. Vol. 3 (2000), #00.1.5. S. N. Ethier and J. Lee, <u>Parrondo games with spatial dependence</u>, arXiv preprint arXiv:1202.2609 [math.PR], 2012 From N. J. A. Sloane, Jun 10 2012 S. N. Ethier, <u>Counting toroidal binary arrays</u>, arXiv preprint arXiv:1301.2352 [math.CO], 2013. N. J. Fine, <u>Classes of periodic sequences</u>, Illinois J. Math., 2 (1958), 285-302. P. Flajolet and R. Sedgewick, <u>Analytic Combinatorics</u>, 2009; see pages 18, 64. H. Fredricksen, <u>The lexicographically least de Bruijn cycle</u>, J. Combin. Theory, 9 (1970) 1-5. Harold Fredricksen, <u>An algorithm for generating necklaces of beads in two colors</u>, Discrete Mathematics, Volume 61, Issues 2-3, September 1986, Pages
	181-188.