AofA Strings and Tries Q&A 1

Q. OGF for number of bitstrings not containing 01010 ?

constructions E + (Zo + Zl) xB=B+P
Zo1010 X B =P + Zo1 X P+ Zp101 X P

GF equations 1+22B(z) = B(z) + P(z)

2°B(z) = (1+ 2% + 2*)P(2)

1+ 22+ 2%
25 4+ (1 —22)(1 4 22 + z4)

explicit form B(z) =



AofA Strings and Tries Q&A 2

Q. Rank these patterns by expected wait time in a random bit string.

00000

00001

01000

01010

10101

62

32

34

36

36

2 ¢(1/2)




AofA Words and Mappings Q&A 1

Q. Find the probability that a random mapping has no singleton cycles.

constructions (' = 7 x SET(C) M = SET(CYCs1(C))

C(2) L e )
EGF equations  C(z) = ze M(z) = exp <1n — — C(z)) e —
1-C(z) 1—-C(z)
coefficients via
Lagrange inversion Lagrange Inversion Theorem (Birmann form).
Ifa GF g(z) = gnZ" satisfies the equation z = f(g(2))
NOT AN EXAM QUESTION : ; e |
X (tOO m UCh Ca|Cu |ati0n) with f(0) = 0 and f ' (0) # 0 then, for any function H(u),

asymptotic
result



AofA Words and Mappings Q&A 1 (improved)

Q. Give the EGF for random mappings with no singleton cycles.

Express your answer as a function of the Cayley function C(z) = zeC(?)

constructions (' = 7 x SET(C) M = SET(CYCs1(C))

EGF equations  C(2) = 2¢“®) M(z) = exp (ln 1-Cl) C(z))

e—C(z)
1-C(2)



AofA Words and Mappings Q&A 1 (another version)

Q. Find the probability that a random mapping has no singleton cycles.
Hint: Do not use generating functions.

A. Each entry can have any value but its own index, so the number of
N-mappings with no singleton cycles is (N — 1)N



Related problems (stay tuned)

Q. Find the probability that a random mapping has no singleton or doubleton cycles.

EGF probability (asymptotic)

all cycle lengths > 1 Mi(z) = ——— e !

all cycle lengths > 2 M(z) = 1—O(z) e—3/2

Rigorous proof requires full mechanism of singularity analysis in the complex plane (stay tuned)



Q&A example: cyclic bitstrings

Def. A cyclic bitstring is a cycle of bits

¢ Y

@ 6 A

Q. How many N-bit cyclic bitstrings ?

%
E% &%
o NS

& &



Q&A example: cyclic bitstrings

Q. How many N-bit cyclic bitstrings ?

One possibility
* Solution is “easy”.
(0)

» Create an exam question with appropriate hints.

£

N

Another possibility \C(b
N

&

od

- Solution is “difficult” or “complicated”. \@/
 Figure out a way to simplify. 0

 Or, think about a different problem.

Third possibility \@/

* Problem you thought of is a “classic”. Ca =
» Use OEIS.



THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

2,3,4,6,8
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A000031 Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of
output sequences from a simple n-stage cycling shift register; also number of binary irreducible
polynomials whose degree divides n.
(Formerly M0564 N0203)

1, 2, 3, 4

, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602,

27596, 52488, 99880, 190746, 364724, 699252, 1342184, 2581428, 4971068, 9587580, 18512792,
35792568, 69273668, 134219796, 260301176, 505294128, 981706832 (list: graph; refs; listen; history; text;

internal format)
OFFSET
COMMENTS
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0,2

Also a(n)-1 is the number of 1's in the truth table for the
lexicographically least de Bruijn cycle (Fredricksen).
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