

PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

An Introduction to **ANALYTIC COMBINATORICS**

Computer Science 488 Robert Sedgewick

AofA EXAM REVIEW

Things to remember about inclass exams

The first written exam is on Wednesday March 25.

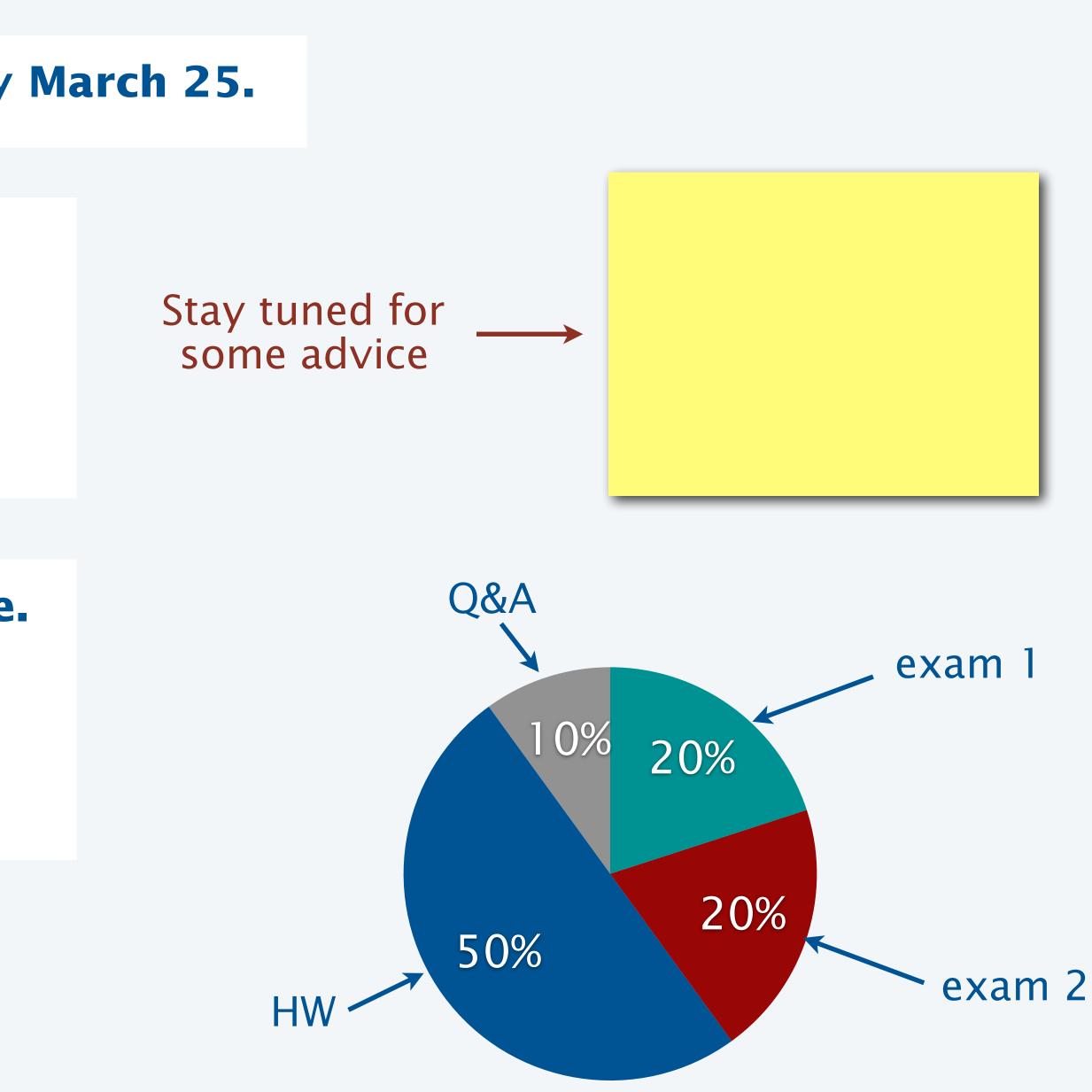
Policies

- Closed book/notes.
- No computer/tablet/phone/calculator.
- 1 page (front and back) cheatsheet.

We know that you don't have much time.

- Exams are 50 minutes.
- At most 1 question per lecture
- Therefore, questions are ~5 minutes.

Each exam is only part of the story.

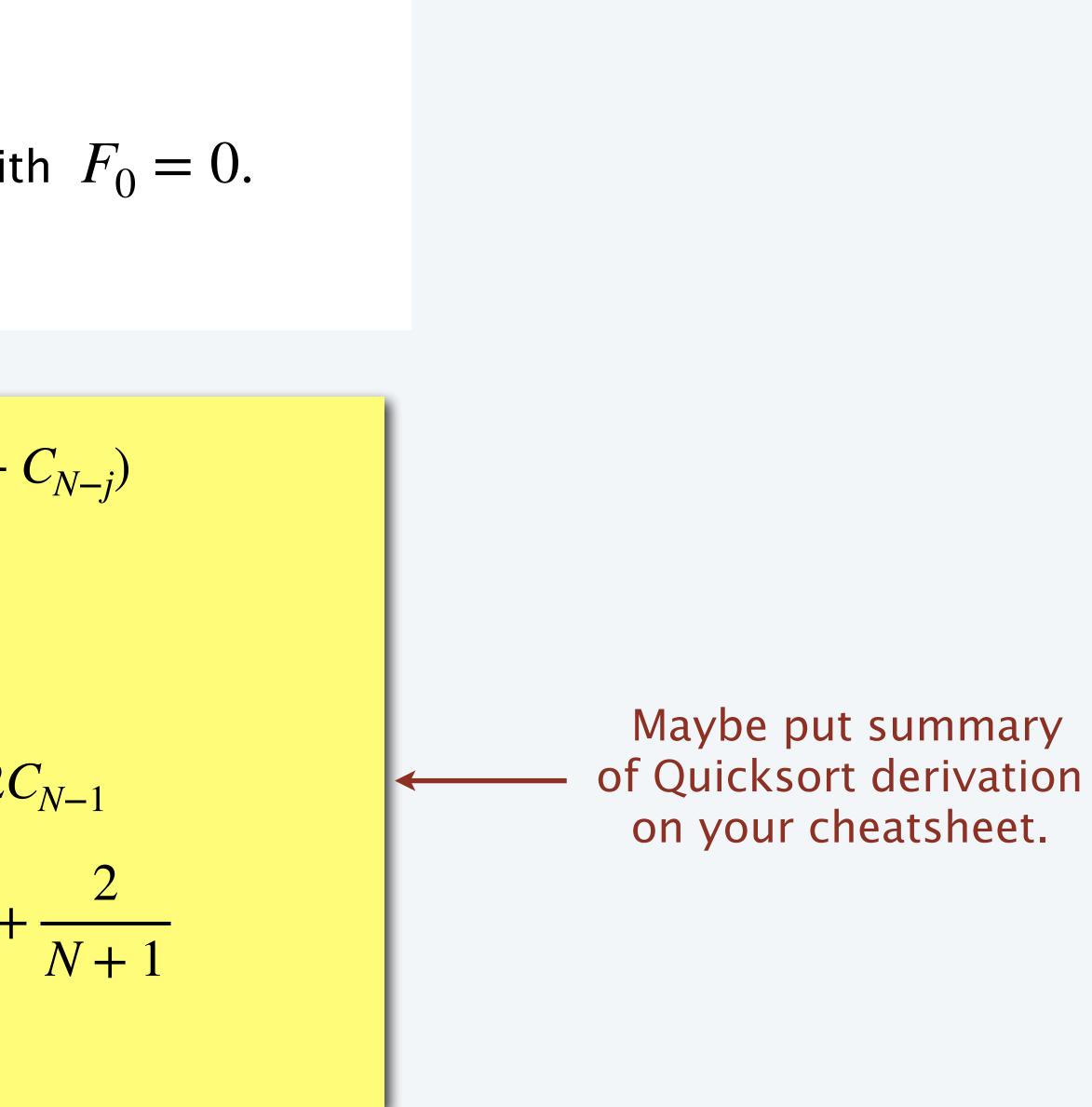


AofA Chapter 1 Intro Q&A example

Q. Solve the following recurrence

$$F_N = N^2 + \frac{1}{N} \sum_{1 \le k \le N} (F_{k-1} + F_{N-k}) \quad \text{wit}$$

$$C_{N} = N + 1 + \frac{1}{N} \sum_{1 \le j \le N} (C_{j-1} + \frac{1}{N} \sum_{1 \le j \le N} C_{j-1} + \frac{2}{N} \sum_{1 \le j \le N} C_{j-1}$$
$$NC_{N} - (N - 1)C_{N-1} = 2N + 2C + \frac{1}{N} + \frac{1}{N$$



AofA Chapter 1 Intro Q&A example (revised)

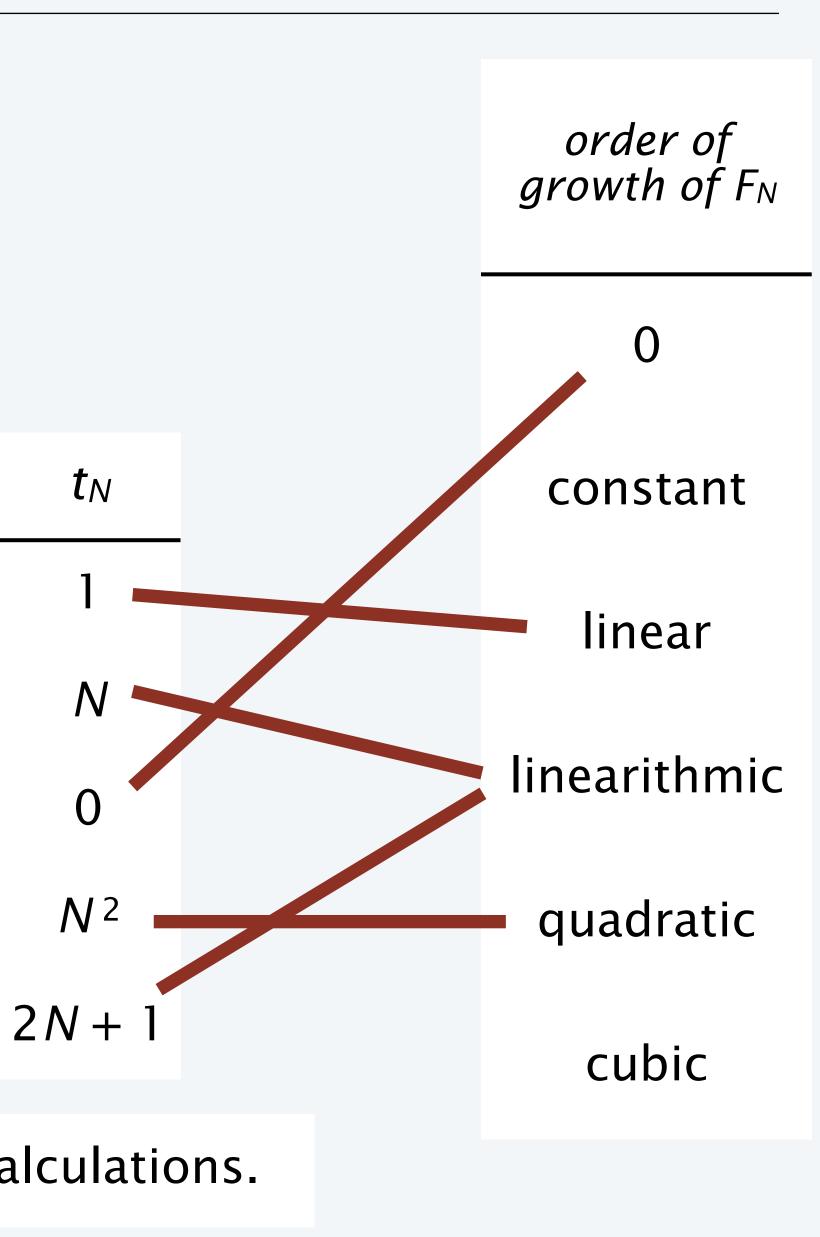
Q. Match each "toll function" at left with the order of growth of the solution at right for the Quicksort recurrence

$$F_N = t_N + \frac{1}{N} \sum_{1 \le k \le N} (F_{k-1} + F_{N-k})$$
 with $F_0 = 0$

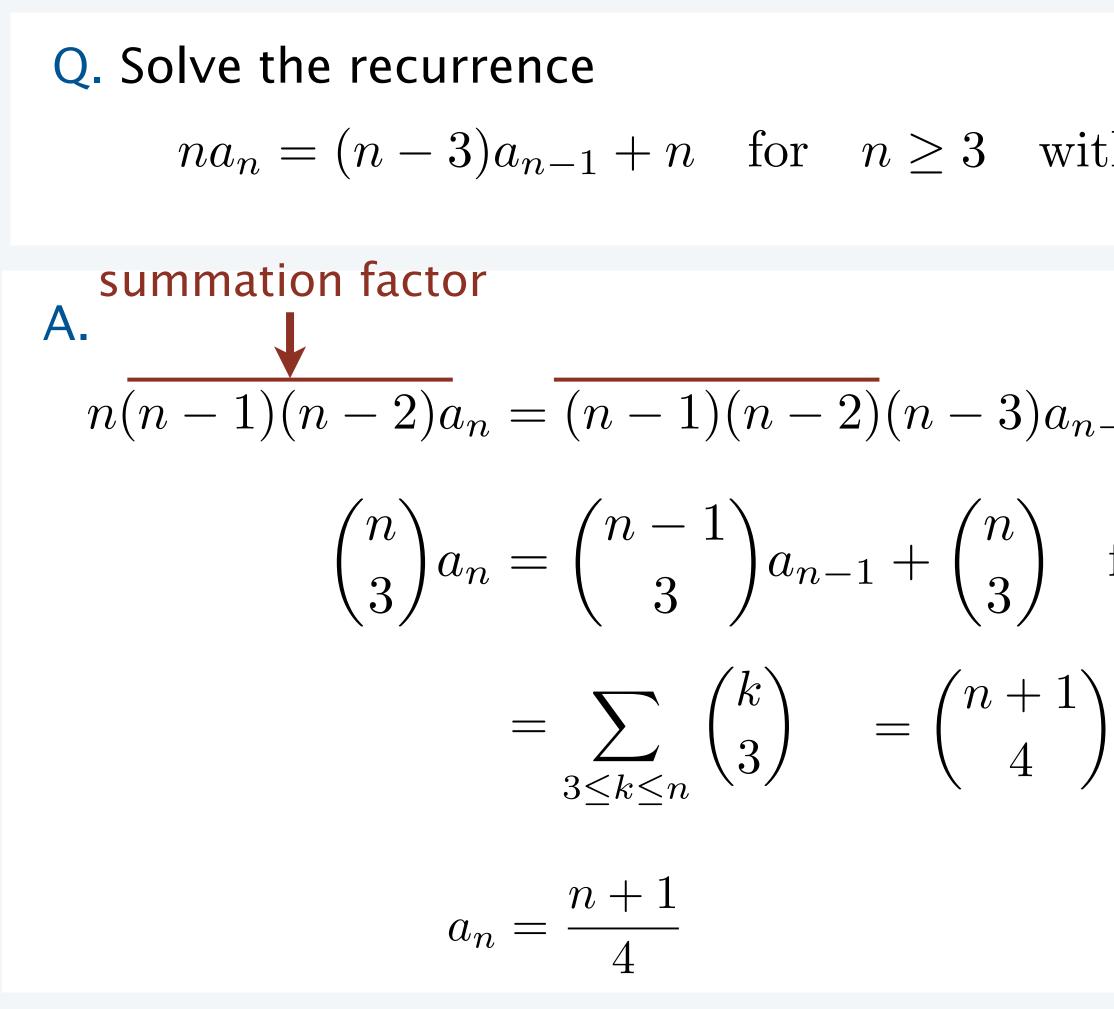
$$NC_N - (N+1)C_{N-1} = 3N^2 - 3$$
$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + 3 + \dots$$

A good question *must* avoid answers that depend on detailed calculations.

3N + 1

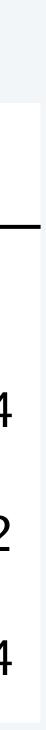


AofA Chapter 2 Recurrences Q&A example



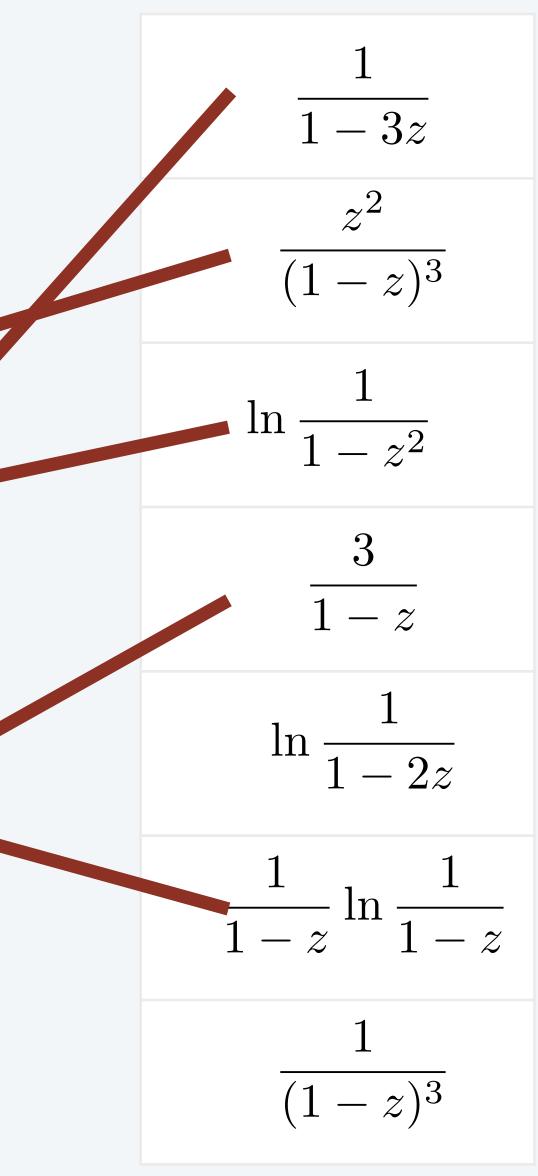
Borderline suitable for a COS 488 inclass exam.

th
$$a_n = 0$$
 for $n \le 2$
 $a_{n-1} + n(n-1)(n-2)$ for $n \ge 3$
for $n \ge 3$
(n) a_n
 $a_n = 3$
(n) a_n
 $a_n = 3$
 $a_n = (n-3)a_{n-1} + 4n$



AofA Chapter 3 GFs Q&A example

Q. Match each of sequence with its OGF.

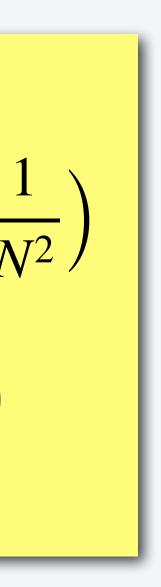


 $\frac{z^M}{(1-z)^M} = \sum_{N \ge M} \binom{N}{M} z^M$ $\ln \frac{1}{1-z} =$ $\sum \frac{z^N}{N}$

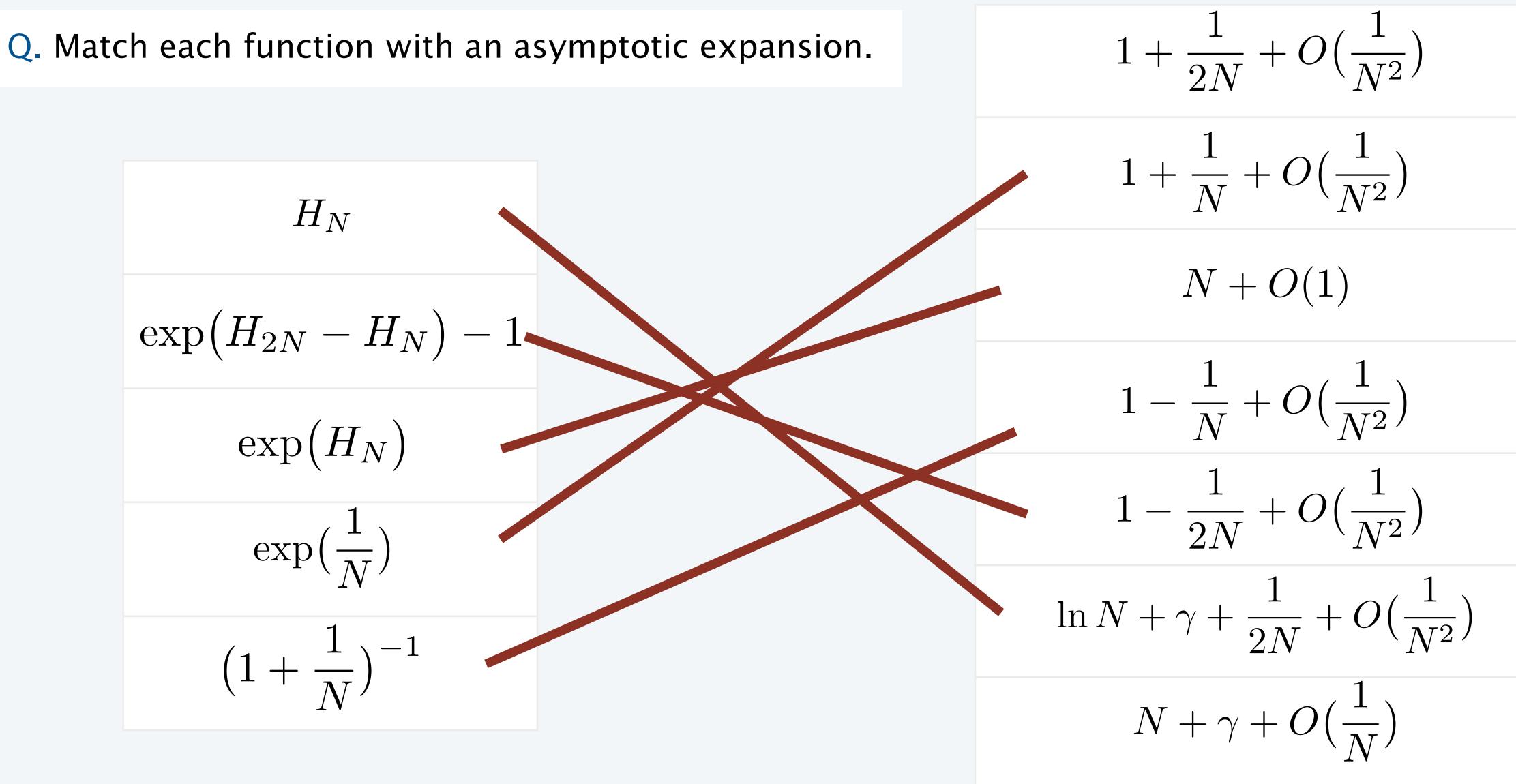
Maybe put formulas you won't quickly remember on the cheatsheet.

AofA Chapter 4 Asymptotics Q&A example 1

Q. Give an asymptotic approximation of
$$e^{H_{2N}-H_N}$$
 to within $O(\frac{1}{N^2})$
A.
 $H_{2N}-H_N = \ln(2N) + \gamma + \frac{1}{4N} + O(\frac{1}{N^2})$
 $-\ln N - \gamma - \frac{1}{2N} + O(\frac{1}{N^2})$
 $= \ln 2 - \frac{1}{4N} + O(\frac{1}{N^2})$
 $\exp(\ln 2 - \frac{1}{4N}) = 2\exp(-\frac{1}{4N}) = 2-\frac{1}{2N} + O(\frac{1}{N^2})$
 $H_N = \ln N + \gamma + \frac{1}{2N} + O(\frac{1}{N})$
 $e^x = 1 + x + \frac{x^2}{2} + O(x^3)$
 $Maybe put formulas you won't quickly remember on the cheatsheet.$



AofA Chapter 4 Asymptotics Q&A example 1 (improved version)

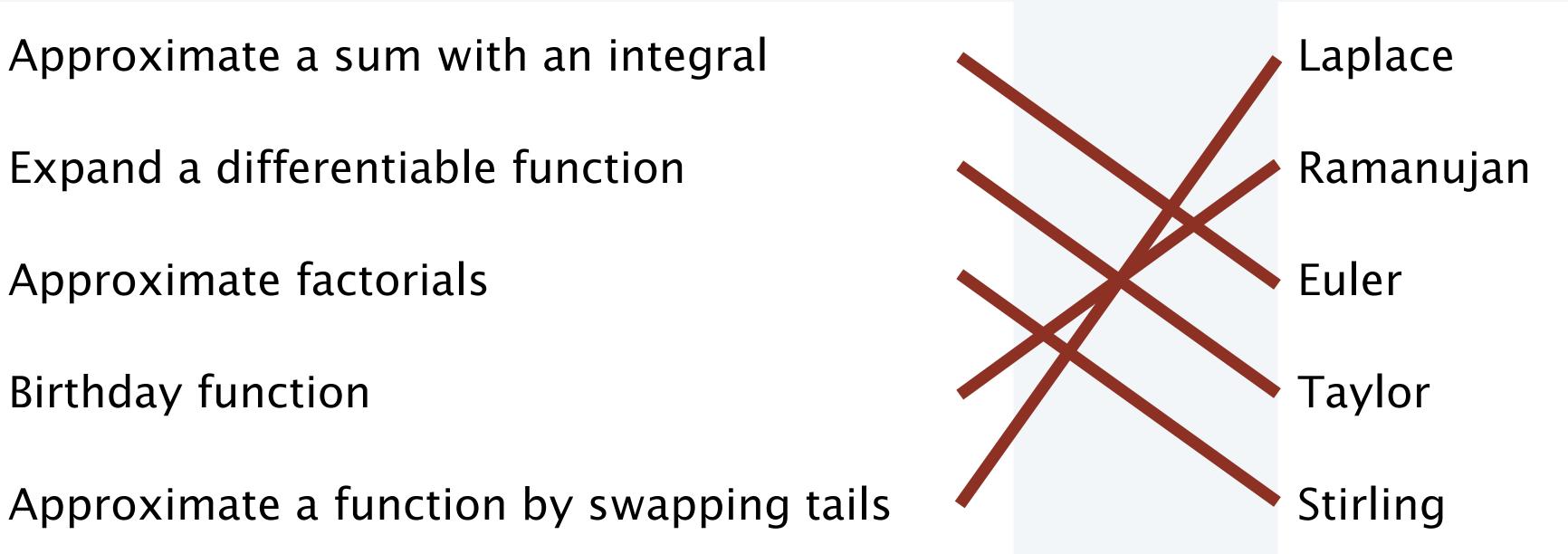


AofA Chapter 4 Asymptotics Q&A Example 2

Q. Match each of the topics described in the book with a mathematician's name.

Approximate a sum with an integral Expand a differentiable function Approximate factorials Birthday function

No, this is not high school, but... You do not want to appear to be ignorant!



AofA Chapter 4 Asymptotics Q&A Example 3

Q. Match each expression with an approximation to its value.



$$(1+x)^{t} = \sum_{0 \le k \le t} {t \choose k} x^{k}$$

$$= 1 + tx + \frac{t(t-1)}{2} x^{2} + O(x^{3})$$

$$(1 + \frac{1}{N})^{t} = 1 + \frac{t}{N} + \frac{t(t-1)}{2N^{2}} + O\left(\frac{1}{N^{3}}\right)$$

$$(1 + \frac{1}{N})^{\alpha N} = 1 + \frac{\alpha N}{N} + \frac{\alpha^{2} N^{2}}{2N^{2}} + \dots$$

$$(1 + \frac{1}{N})^{\alpha N} = \exp\left(\alpha N \ln(1 + 1/N)\right)$$

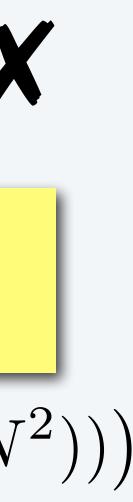
$$(1 + \frac{1}{N})^{\alpha N} = \exp\left(\alpha N \ln(1 + 1/N)\right)$$

 ≈ 1.1045

 $= \exp(\alpha N(1/N + O(1/N^2)))$

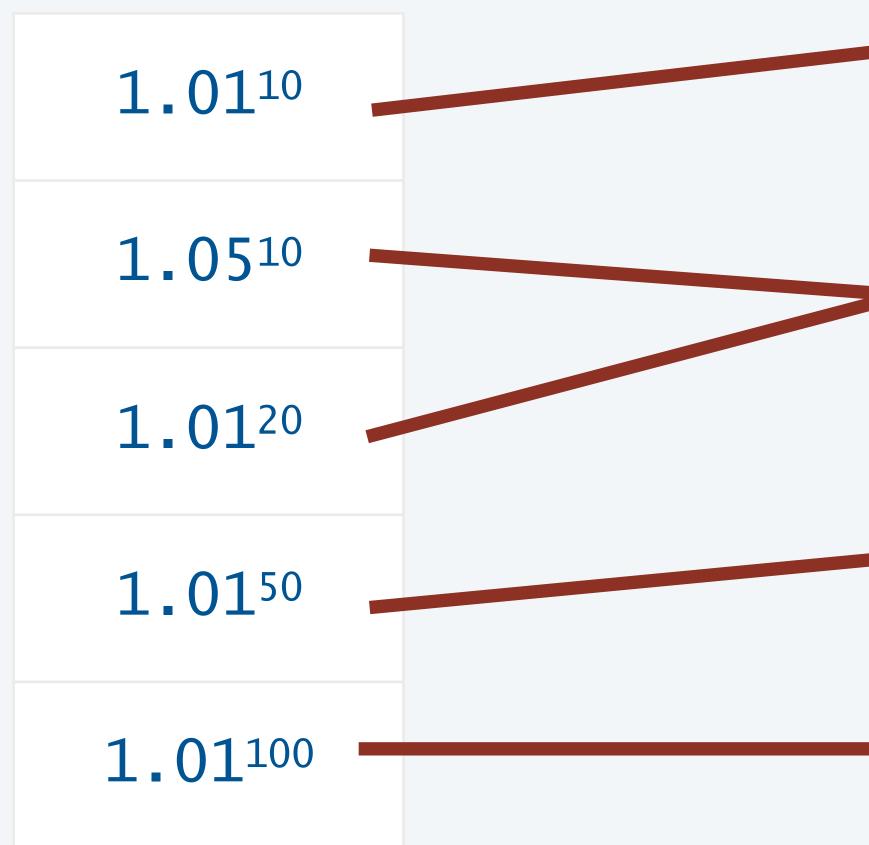
$$= e^{\alpha} + O\left(\frac{1}{N}\right)$$

 $1.01^{50} \approx \sqrt{e}$

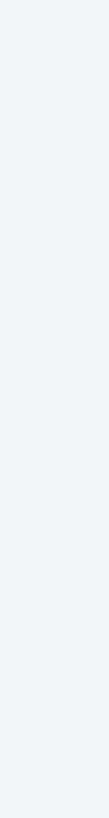


AofA Chapter 4 Asymptotics Q&A Example 3

Q. Match each expression with an approximation

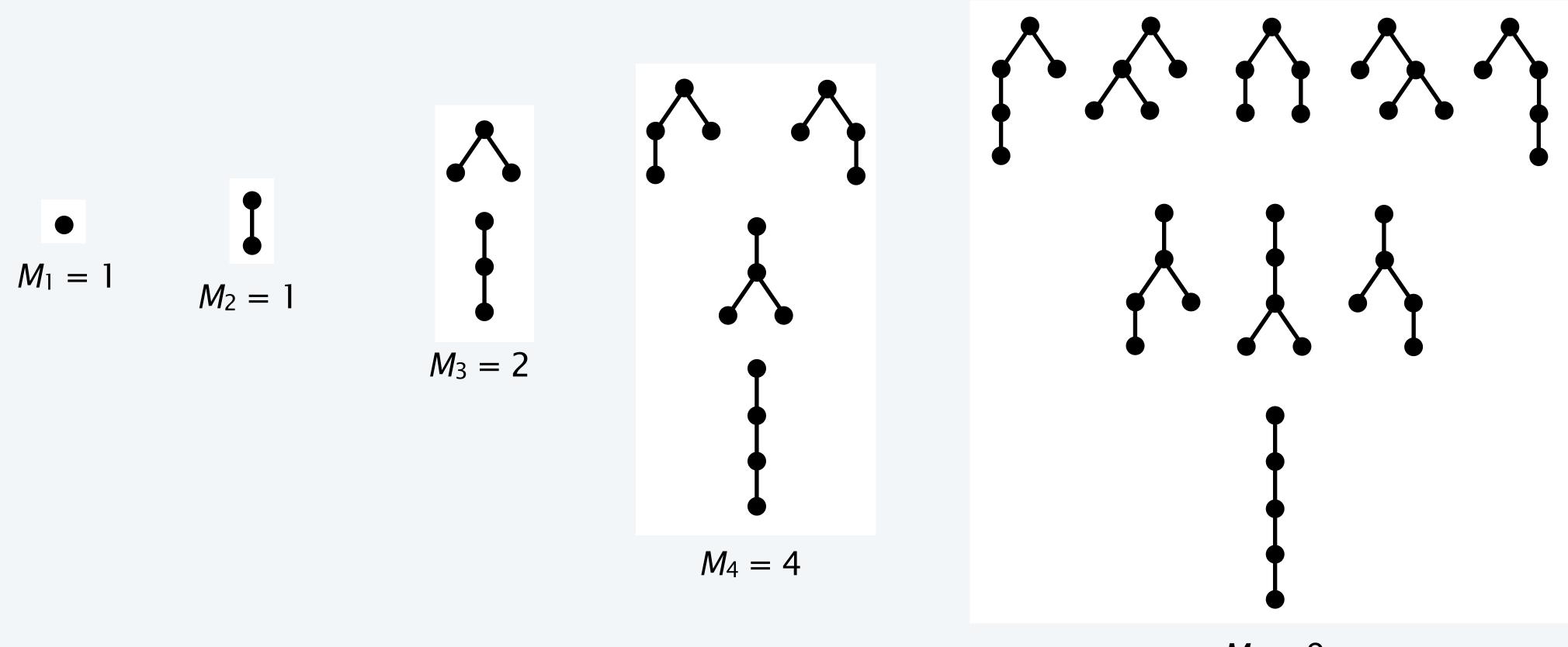


nation to its value.	1.10102
	1.10462
	1.22019
	1.50034
	1.62889
	1.64463
	2.02300
	2.70481
	2.71828

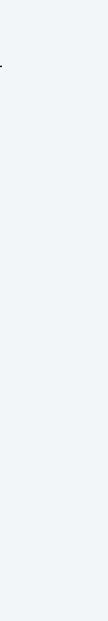


AofA Chapter 5 Analytic Combinatorics (or Trees) Q&A example

Def. A *unary-binary tree* is a rooted, ordered tree with node degrees all 0, 1, or 2.

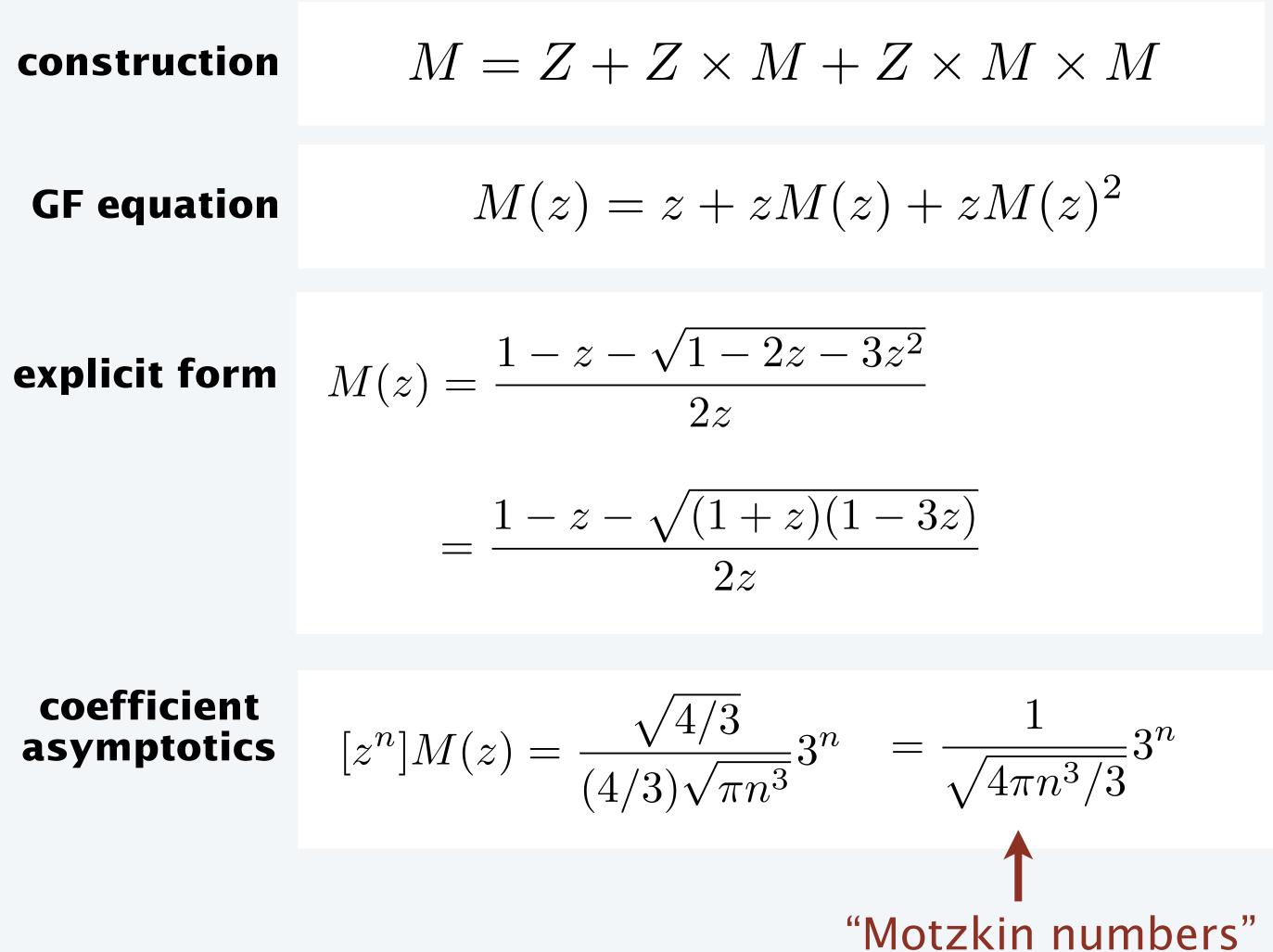


 $M_{5} = 9$



AofA Chapter 5 Analytic Combinatorics (or Trees) Q&A example

Q. How many unary-binary trees?



 $[z^n]\frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)}\rho^{-n}n^{\alpha-1}$ $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

 $\Gamma(1) = 1$ $\Gamma(s+1) = s\Gamma(s)$

NOT AN EXAM QUESTION (too much calculation)

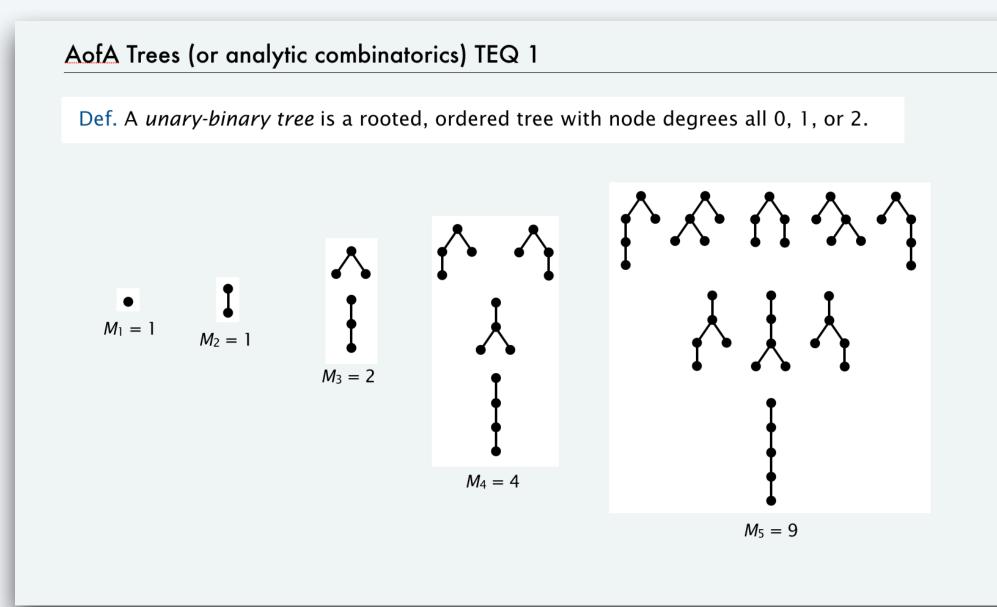
IMPORTANT NOTE: It's wise to check GF equations before trying to solve them!

 $M(z) = z + zM(z) + zM(z)^{2}$

 $M(z) = z + z^{2} + 2z^{3} + 4z^{4} + 9z^{5} + \dots$

z = z $zM(z) = z^{2} + z^{3} + 2z^{4} + 4z^{5} + \dots$ $z(M(z)^{2}) = z^{3} + z^{4} + 2z^{5} + \dots$ $+z^4 + z^5 + \dots$ $+2z^{5}+...$

 $z + zM(z) + zM(z)^2 = z + z^2 + 2z^3 + 4z^4 + 9z^5 + \dots$





AofA Chapter 5 Analytic Combinatorics (or Trees) Q&A example (improved version?)

Q. How many unary-binary trees?

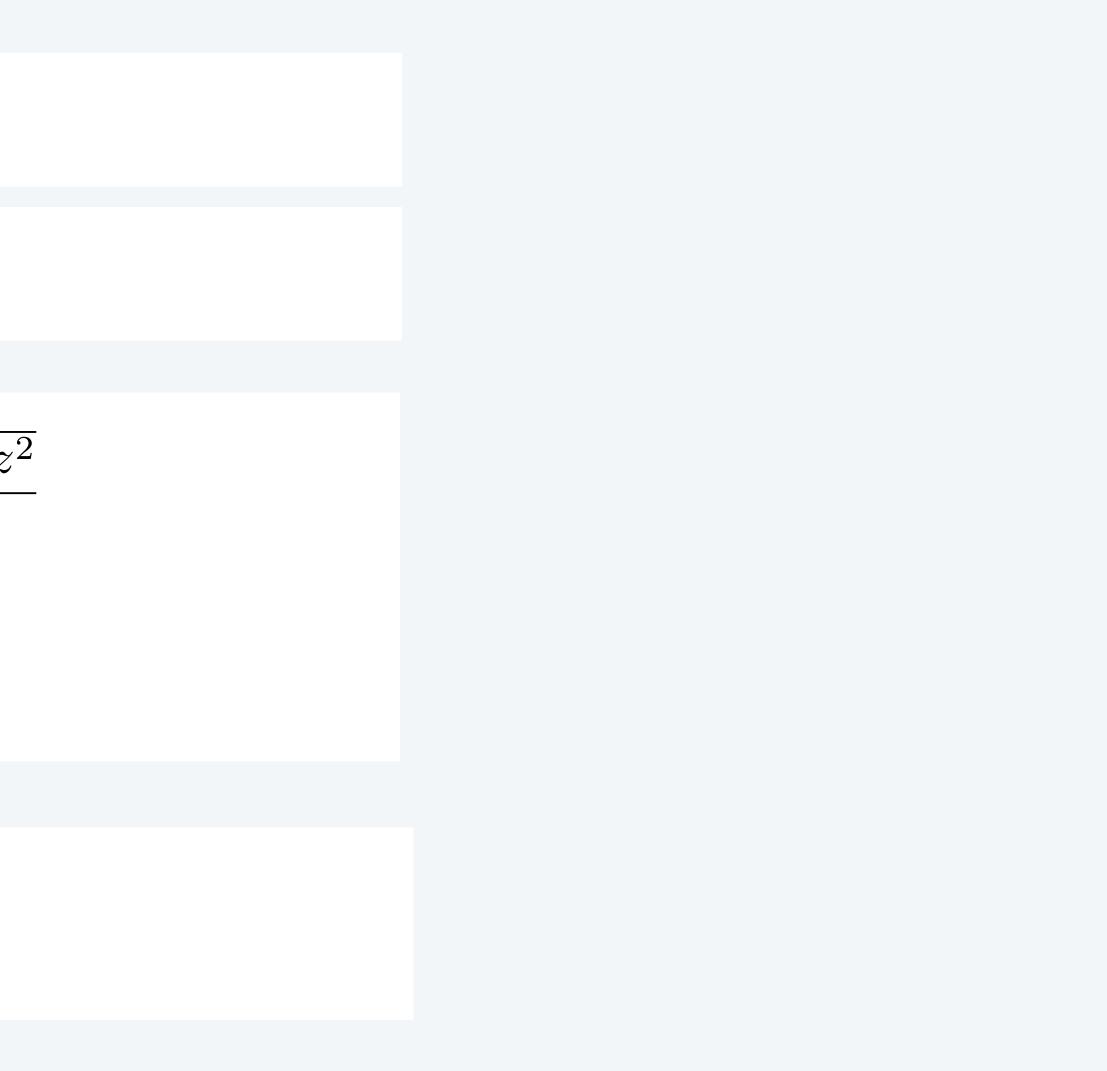
construction

GF equation

explicit form

$$M(z) = \frac{1 - z - \sqrt{1 - 2z - 3z^2}}{2z}$$

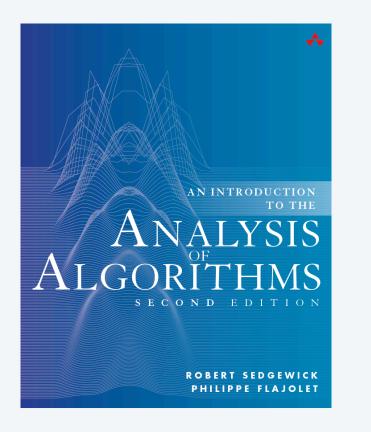
coefficient asymptotics





16

Aside



§6.15

Now, Theorem 4.11 provides an immediate proof that $[z^N]M(z)$ is $O(3^N)$, and methods from complex asymptotics yield the more accurate asymptotic estimate $3^N/\sqrt{3/4\pi N^3}$. Actually, with about the same amount of work, we can derive a much more general result.

Errata posted in 2019:

Complex asymptotics is often not needed.

BUT it allows us to address entire classes of problems (stay tuned).

TREES

335

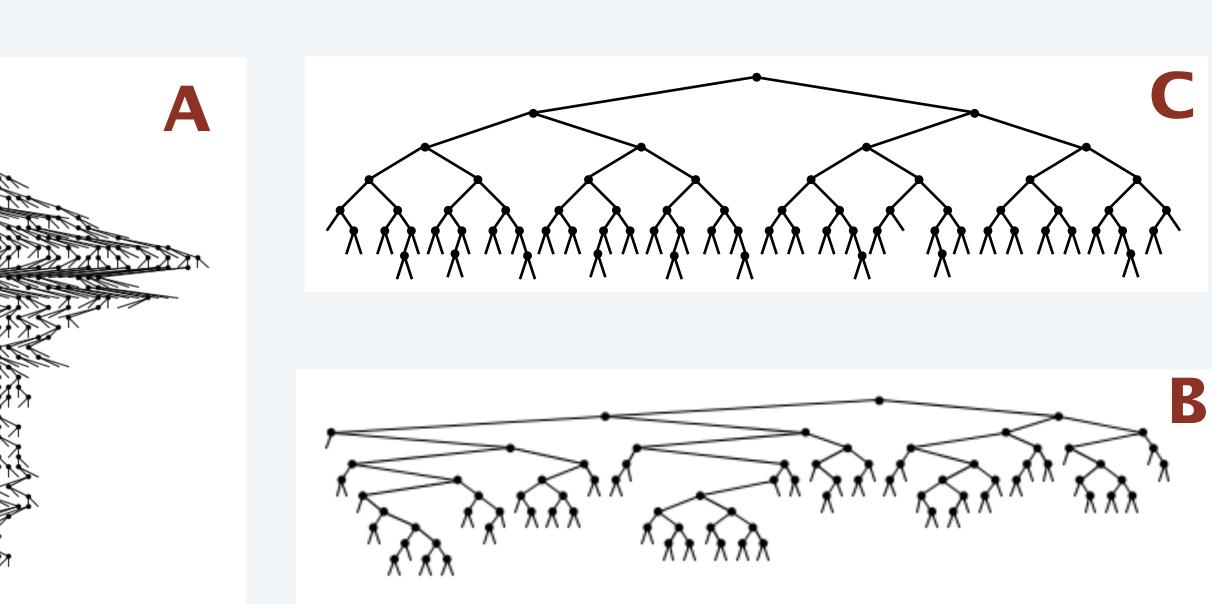
• **335.** First sentence should read "The corollary to Theorem 5.5 (page 250) provides an immediate proof that $[z^n]M(z) \sim 3^n/\sqrt{4\pi n^3/3}$."

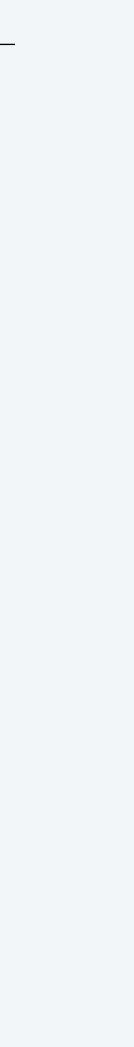
AofA Chapter 5 Trees Q&A example

Q. Match each diagram with its description

Α.	random Catalan tree	
Β.	random BST	
С.	random AVL tree	

Some questions are *very easy* if you've watched the lecture (and impossible if not).

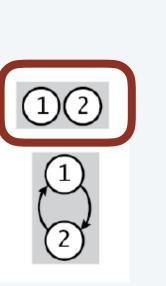




18

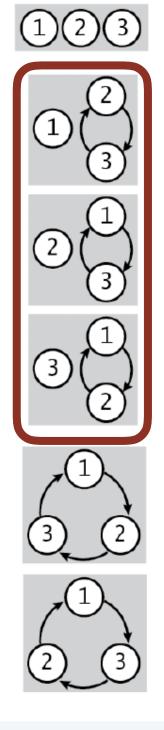
AofA Chapter 7 Permutations (or analytic combinatorics) Q&A example

Q. What is the probability that a random perm of size *n* has exactly 2 cycles?

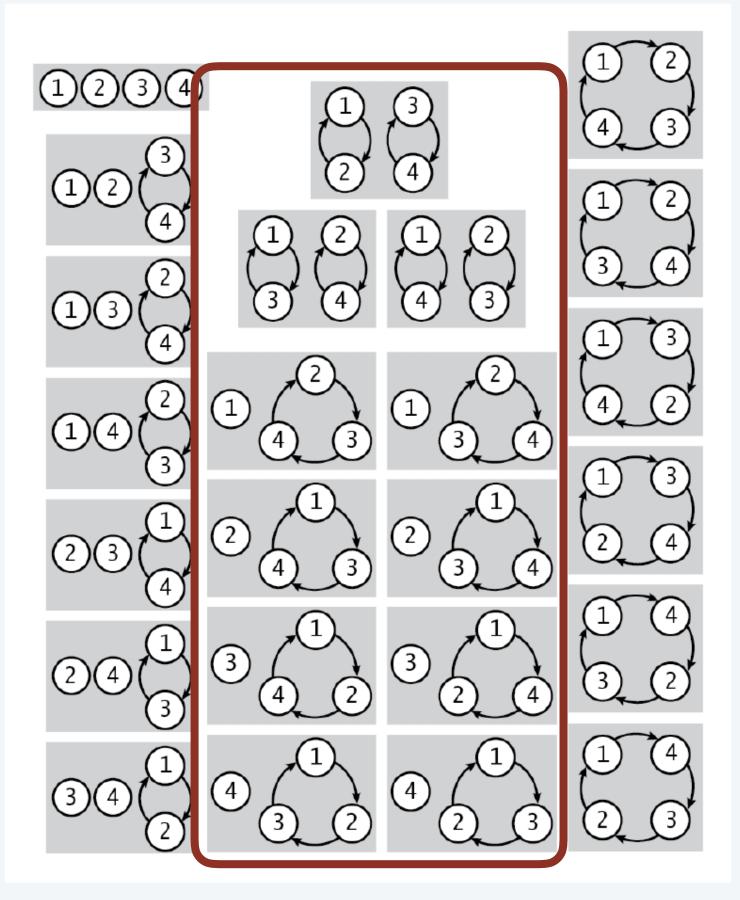


1/2

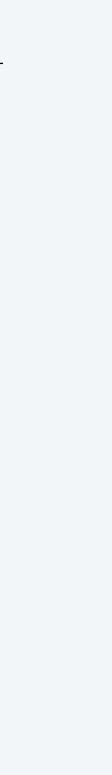
(1)



3/6

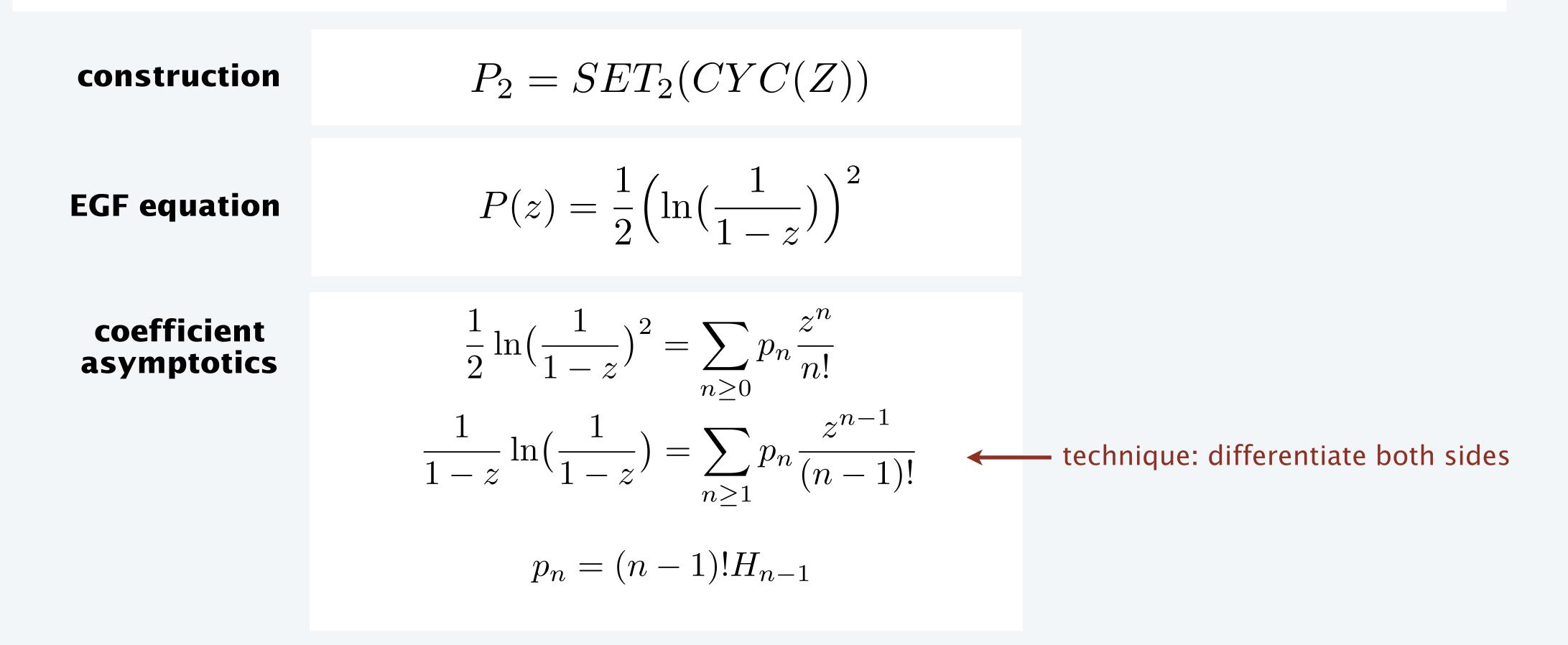


11/24



AofA Chapter 7 Permutations (or analytic combinatorics) Q&A example

Q. What is the probability that a random perm of size *n* has exactly 2 cycles?



A.
$$H_{n-1}/n$$

AofA Chapter 7 Permutations (or analytic combinatorics) Q&A example (improved?)

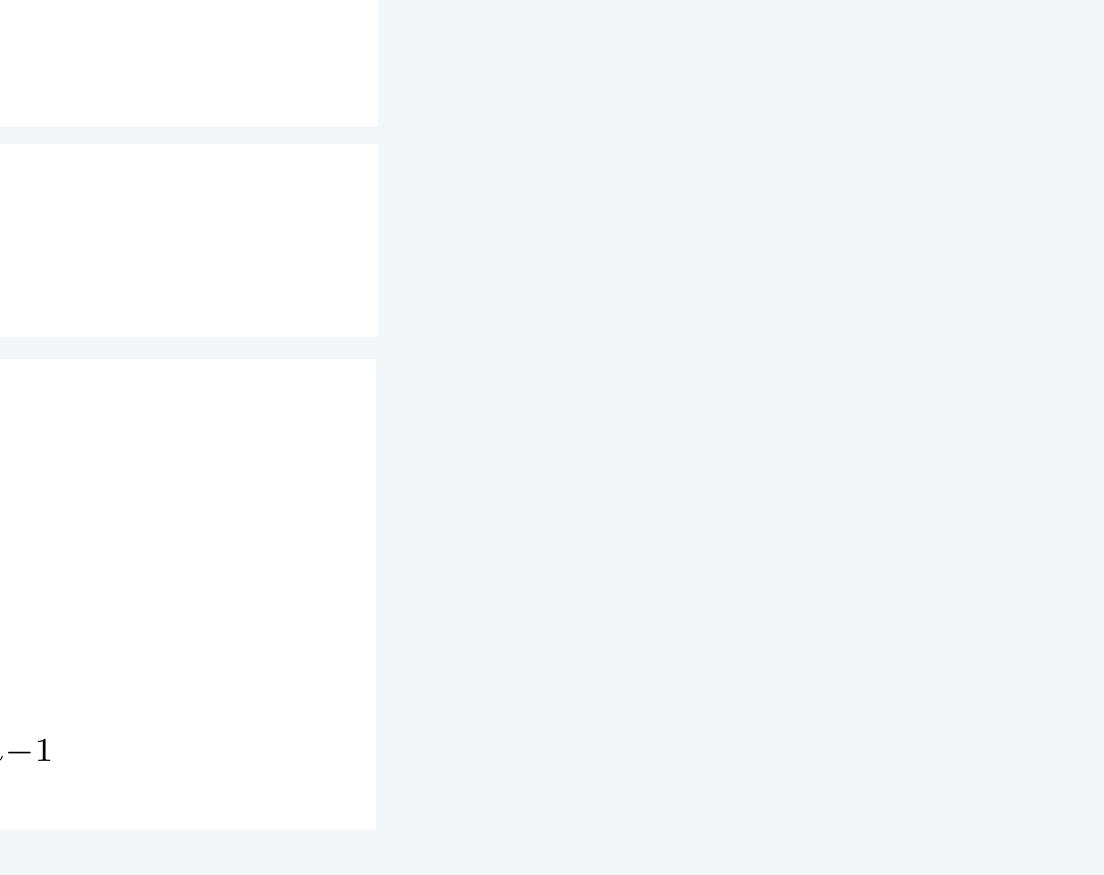
Q. What is the probability that a random perm of size *n* has exactly 2 cycles?

construction

EGF equation

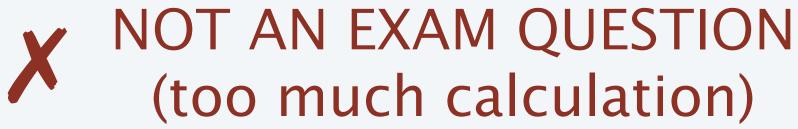
coefficient asymptotics

$$p_n = (n-1)!H_n$$



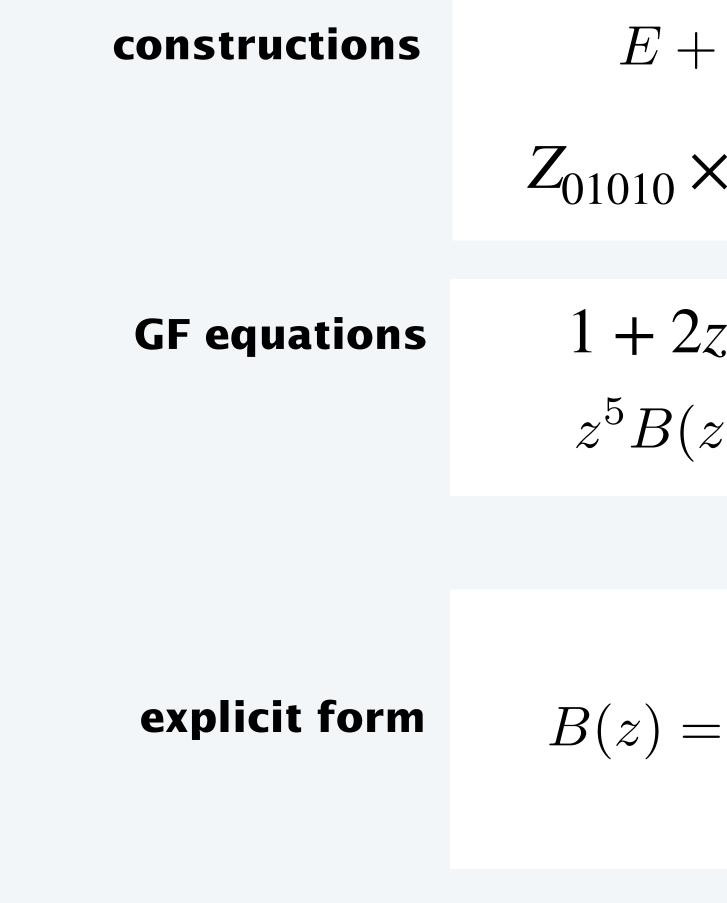
AofA Chapter 8 Strings and Tries Q&A example 1

Q. OGF for number of bitstrings not containing 01010? constructions $E + (Z_0 + Z_1) \times B = B + P$ $Z_{01010} \times B = P + Z_{01} \times P + Z_{0101} \times P$ 1 + 2zB(z) = B(z) + P(z)**GF** equations $z^{5}B(z) = (1 + z^{2} + z^{4})P(z)$ NOT AN EXAM QUESTION (too much calculation) $B(z) = \frac{1+z^2+z^4}{z^5+(1-2z)(1+z^2+z^4)}$ explicit form



AofA Chapter 8 Strings and Tries Q&A example 1 (improved version)

Q. Fill in the blanks in this OGF for the number of bitstrings not containing 01010.



$$+ (Z_0 + Z_1) \times B = B + P$$

$$\times B =$$

$$2zB(z) =$$

$$(z) = (1 + z^2 + z^4)P(z)$$

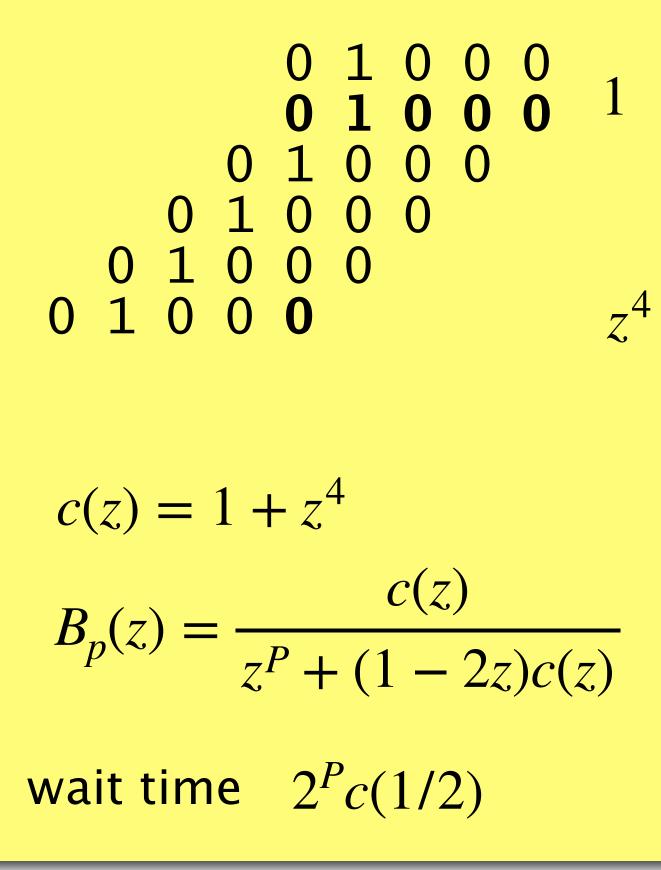
$$1 + z^2 + z^4$$

$$\frac{1}{z^5 + (1 - 2z)(1 + z^2 + z^4)}$$

AofA Chapter 8 Strings and Tries Q&A example 2

Q. Rank these patterns by expected wait time in a random bit string.

00000	62
00001	32
01000	34
01010	36
10101	36



AofA Chapter 9 Words and Mappings Q&A example

Q. Find the probability that a random mapping has no singleton cycles.

constructions $C = Z \star SET(C)$ $M = SET(CYC_{>1}(C))$

EGF equations

$$C(z) = ze^{C(z)} \qquad M(z) = \exp\left(\ln\frac{1}{1 - C(z)} - C(z)\right) = \frac{e^{-C(z)}}{1 - C(z)}$$

coefficients via Lagrange inversion

NOT AN EXAM QUESTION (too much calculation)

asymptotic result

If a GF
$$g(z) = \sum_{n \ge 1} g_n z^n$$
 satisfies the equation $z = f(g(z))$
with $f(0) = 0$ and $f'(0) \neq 0$ then, for any function $H(u)$,
 $[z^n]H(g(z)) = \frac{1}{n}[u^{n-1}]H'(u)\left(\frac{u}{f(u)}\right)^n$

Lagrange Inversion Theorem (Bürmann form).

Still, you might want this on your cheatsheet

AofA Chapter 9 Words and Mappings Q&A example (improved)

Q. Give the EGF for random mappings with no singleton cycles. Express your answer as a function of the Cayley function $C(z) = ze^{C(z)}$

constructions
$$C = Z \star SET(C)$$
 $M = SET(CYC_{>1}(C))$
EGF equations $C(z) = ze^{C(z)}$ $M(z) = \exp\left(\ln\frac{1}{1 - C(z)} - e^{C(z)}\right)$

$$= \exp\left(\ln\frac{1}{1-C(z)} - C(z)\right)$$
$$= \frac{e^{-C(z)}}{1-C(z)}$$

AofA Chapter 9 Words and Mappings Q&A example 1 (another version)

Q. Find the probability that a random mapping has no singleton cycles.

A. Each entry can have any value but its own index, so the number of N-mappings with no singleton cycles is $(N-1)^N$

$$\frac{(N-1)^N}{N^N} = \left(1 - \frac{1}{N}\right)^N$$
$$\sim \frac{1}{e}$$

Monday March 9	Exam 1 Review
Monday March 23	Live Lecture (AC
<i>Wednesday</i> March 25	EXAM 1 (AofA)
<i>Monday</i> April 27	Exam 2 Review
Monday May 4	EXAM 2 (AC)

C Prolog)

