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Orientation
Second half of class

• Surveys fundamental combinatorial classes.

• Considers techniques from analytic combinatorics to study them .

• Includes applications to the analysis of algorithms.

2

chapter combinatorial classes type of class type of GFtype of GF

6 Trees unlabeledunlabeled OGFs

7 Permutations labeledlabeled EGFs

8 Strings and Tries unlabeledunlabeled OGFs

9 Words and Mappings labeledlabeled EGFs
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Note: Many more examples in book than in lectures.
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Symbolic method for unlabelled objects (review)

type class size GF

0 bit 1 z

1 bit 1 z

Atoms

4

Class B, the class of all binary strings

Size |b |, the number of bits in b

OGF

Warmup: How many binary strings with N bits?

)(a) =
∑

I∈)

a|I| =
�

5��

)5a5

A�

A�

“a binary string is a sequence
of 0 bits and 1 bits”Construction ) = :,8(A� + A�)

OGF equation )(a) =
�

�− �a

✓[a5])(a) = �5



“a string is a sequence of chars”Construction : = :,8(A� + A� + . . .+ A4)

Symbolic method for unlabelled objects (review)

type class size GF

char 1 Z1 1 z

char 2 Z2 1 z

. . .. . .. . .. . .

char M Z M 1 z

Atoms

5

Class S, the class of all strings

Size |s |, the number of chars in s

OGF

How many strings drawn from an M-char alphabet with N chars?

OGF equation :(a) =
�

�−4a

✓Extract coefficients [a5]:(a) = 45

:(a) =
∑

Z∈:

a|Z| =
�

5��

:5a5



Symbolic method for labelled objects (review): sets

Q. How many labeled sets (urns) of size N ?

A. One.

!

6

S0 = 1

1

S1 = 1
2

1

S2 = 1

3

1

2

S3 = 1

2 3

1

4

S4 = 1



Labelled objects review (continued): sets

7

Q. How many ordered pairs of labelled sets of N objects?

A. 2N

2

1 !

! 1

P1 = 2

2

1

P2 = 4

!

2

1
!

2 1

1 2

3

1

2

P3 = 8

!

! 3

1

2

2

1
3

3

1
2

3

2
1

1
3

2

3
2

1

2
3

1

Q. How many sequences of length M of urns with N objects in total ?



Balls-and-urns viewpoint

8

Q. How many different ways to throw N balls into 2 urns?

A. 2N

1

2

3

1

2

3

1 2

3

2

3

1

2 1

3

1

3

2

3 1

2

1

2

3 W3 = 8
W2 = 4

1

2

1 2

2 1

1

2

W1 = 2

1

1
W0 = 1



The symbolic method for labelled classes (review)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

9

construction notation semantics EGF

disjoint union A + B disjoint copies of objects from A and B

labelled product A ★ B ordered pairs of copies of objects,
one from A and one from B

sequence

SEQk ( A ) k- sequences of objects from A

sequence
SEQ ( A ) sequences of objects from A

set
SETk ( A ) k-sets of objects from A

set
SET ( A ) sets of objects from A

cycle

CYCk ( A ) k-cycles of objects from A

cycle
CYC ( A ) cycles of objects from A

((a) + )(a)

((a))(a)

�
� � ((a)

L( ( a )

ln
�

� � ((a)

((a)R

((a)R/R

((a)R/R!



Construction >4 = :,84(:,;(A))

Words

type class size GF

labelled atom Z 1 z

Atom

10

Def. A word is a sequence of M urns holding N objects in total. 

Class WM, the class of M-sequences of urns

Size |w |, the number of objects in w

EGF >4(a) =
∑

^∈>4

a|^|

|^|! =
�

5��

>45
a5

5!

OGF equation >4(a) = (La)4 = L4a

Counting sequence 5![a5]>4(a) = 45

Q. How many words ?
“throw N balls into M urns”

Example

7 !3

1

8 4

2

9

5

6

{ 7 } { 1 8 3 } { } { 2 4 } { 5 6 9 }

2

4

7 5

6

9

1

3

8



A 1:1 correspondence

11

Correspondence

• For each i in the kth set in the word set the i th char in the string to k. 

• If the i th char in the string is k, put i into the k th set in the word.

7 !3

1

8 4

2

9

5

6

1  2  3  4  5  6  7  8  9

2  4  2  4  5  5  1  2  5

A word is a sequence of M labelled sets (having N objects in total). There are MN words.

Typical word
{ 7 } { 1 8 3 } { } { 2 4 } { 5 6 9 }

A string is a sequence of N characters (from an M-char alphabet). There are MN  strings.

Typical string
2  4  2  4  5  5  1  2  5



Strings and Words

Familiar definition.
     A string is a sequence of N characters (from an M-char alphabet).

1-1 correspondence between words and strings

• Length of sequence in word: number of chars M in the alphabet.

• Number of objects in the set: length of string N.

• k th set in the sequence: indices where k appears in the string.

Combinatorial definition.
     A word is a sequence of M labeled sets (having N objects in total).

Q. What is the difference between strings and words?

A. Only the point of view.
• With strings (last lecture) we study the sequence of characters.
• With  words  (this lecture) we study the sets of indices.

12

1 2 3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

N = 3
M = 2

{ 1 2 3 } { }

{ 1 2 } { 3 }

{ 1 3 } { 2 }

{ 1 } { 2 3 }

{ 2 3 } { 1 }

{ 2 } { 1 3 }

{ 3 } { 1 2 }

{ } { 1 2 3 }



Strings and Words (summary)

13

class type GF 
type typical construction GF count

STRING unlabelled OGF 2 4 2 4 5 5 1 2 5 S = SEQ(Z1 + ... + ZM) MN

WORD labelled EGF 2 4 2 4 5 5 1 2 5 WM = SEQM(SET(Z) MN>4(a) = L4a

:(a) =
�

�−4a

7 !
3

1

8 4

2

9

5

6

{7}{183}{}{24}{569}

2

4

7 5

6

9

1

3

8
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Birthday problem

Q. How many people asked before finding two with the same birthday? 

December 12July 3

May 26

June 14

March 4

October 31

 One at a time, ask each member of a group of people their birth date.

Quick answer: at most 365
15



Birthday problem

Q. How long until some urn gets two balls (for M = 365) ?

Throw N balls into M urns, one at a time.

16

1 2 3 4 5 6 7 8 9



Construction )4 = :,84(,+ A)

Birthday sequences (words with no duplicates)

17

Def. A birthday sequence is a word where no set has more than one element. 

Q. How many birthday sequences?
a string with no duplicate letters

OGF equation )4(a) = (� + a)4

Counting sequence 5![a5])4(a) = 5!

�
4
5

�
=

4!

(4�5)!

= 4(4� �) . . . (4�5+ �)

Class BM, the class of birthday sequences

EGF

Example

{ 3 } { } { 5 } { 1 } { } { } { 4 } { 2 } { }

4 8 1 7 3=
�

5��

)45
a5

5!
)4(a) =

∑

^∈)4

a|^|

|^|!



Number of N-char M-words 
where no char is repeated 4(4� �)(4� �) . . . (4�5+ �) =

4!

(4�5)!

Birthday problem

18

Probability that no char is repeated 
in a random M-word of length N.

Same as the probability 
that the first repeat 

position is > N.

4!

45(4�5)!

Expected position of the first repeat

�

��5�4

4!

45(4�5)!

Laplace method to estimate Ramanujan Q-function
(see Asymptotics lecture)

= � +8(4) �
�
�4/�

Theorem. Expected position of the first repeated character in a random M-word is �
�
�4/�



Birthday problem

Q. How many people asked before finding two with the same birthday? 

19

A. About 24. % bc
scale = 5
sqrt(3.14159*365/2)
23.94453

�
�
�4/�



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  O N E 

OF

http://aofa.cs.princeton.edu

9. Words and Mappings
•Words
•Birthday problem
•Coupon collector problem
•Hash tables
•Mappings

9c.Words.Coupon



Coupon collector problem

Q. How many people asked before finding every day of the year? 

December 12July 3

May 26

June 14

March 4

October 31

 One at a time, ask each member of a group of people their birth date.

Quick answer: at least 365
21



Coupon collector problem

Q. How long until each urn has at least one ball ?

Throw N balls into M urns, one at a time.

22

1 2 3 4 5 6 7 8 9



Coupon collector problem

Q. How many coupons collected before having every possible coupon? 

A collector buys coupons, each randomly chosen from M different types

23

Quick answer: at least 365



Coupon collector problem

Q. How many rolls until seeing all M values ? 

Roll an M-sided die.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

9 12 19 3 5 20 10 17 16 20 13 8 2 13 9 2 15 17 3 9 11 7 18 2 10 1 20 12 10 8 14 5 5 9 4 5 6

first repeat

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



Coupon collector (classical analysis)

Probability that more than j rolls are 
needed to get the (k+1)st coupon

Theorem.  Expected number of coupons needed to complete a collection of size M is ~M ln M.

Motivation for studying in more detail:
• Discover variance and other properties of the distribution.
• Learn structure suitable for analyzing variants and extensions.

25

� R
4

�Q

Expected number of rolls
to get the (k+1)st coupon

�

Q��

� R
4

�Q
=

�
� � R/4

=
4

4 � R

Expected number of rolls
to get all coupons

by linearity of 
expectation

�

��R<4

4
4� R

= 4/4 � 4 ln4



Construction 94 = :,84(:,;>�(A))

Coupon collector sequences (M-words with no empty sets)

26

Def. A coupon collector sequence is an M-word with no empty set. 

Q. How many coupon collector sequences?

Example  ( M = 5 )

{ 7 } { 1 3 } { 9 } { 2 4 } { 5 6 8 }

2 4 2 4 5 5 1 5 3

a string that uses all the letters in the alphabet

Example  ( M = 26 )
the quick brown fox jumps over the lazy dog

Class RM, the class of coupon collector sequences

EGF 94(a) =
∑

^∈94

a|^|

|^|! =
�

5��

945
a5

5!

Counting sequence 5![a5]94(a) = 5![a5]
�

Q

�
4
Q

�
(��)QL(4�Q)a

=
�

Q

�
4
Q

�
(��)Q(4� Q)5

EGF equation 94(a) = (La � �)4



Coupon collector sequences (EGF analysis, continued)

Probability that a random 
M-word of length N is a 

coupon collector sequence.

27

�
45

�

Q

�
4
Q

�
(��)Q(4� Q)5

Probability that collection 
in a random M-word

completes in >N chars.

Average number of chars to 
complete a collection in a 

random M-word.

Knuth Exercise 1.2.7-13



Coupon collector (OGF analysis)

28

Class WMk, the class of M-words 

OGF

PGF

Mean wait time 
for k coupons

with k different letters and the last letter appearing only once

Example

{ } { 3 5 6 7 } { 9 } { } { } { 1 2 4 8 }

3

5

6

6 6 2 6 2 2 2 6 3

7

9 1

2

4

8



Coupon collector (OGF analysis, continued)

29

Construction

OGF equation
OGF

Evaluate at z/M
PGF

Differentiate and evaluate at 1 Wait time for k coupons

Rearrange terms and telescope

Wait time for full collection

WMk ≡ M-words with k different letters and 
the last letter appearing only once.



Coupon collector problem

Q. How many coupons collected before having every possible coupon? 

A collector buys coupons, each randomly chosen from M different types

30
A. ~M ln M. 



Coupon collector problem

Q. How many rolls until seeing all M values ? 

Roll an M-sided die.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

9 12 19 3 5 20 10 17 16 20 13 8 2 13 9 2 15 17 3 9 11 7 18 2 10 1 20 12 10 8 14 5 5 9 4 5 6

31
A. ~M ln M. About 60 for a 20-sided die



Coupon collector problem: Sample application

Q. How many memory accesses before hitting every page, when M = 220 ? 

A program randomly accesses an M-page memory.

32

A. About 14.5 million. % bc -l
l(2)
.69314718055994530941
2^20*l(2^20)
14536349.96005650425534480384



Class R, the class of surjections

Construction

Class RM, the class of M-surjections

Construction

94 = :,84(:,;>�(A))

Surjections

33

Def. An M-surjection is an M-word with no empty set. Alt name for "coupon collector sequence"

Def. A surjection is a word that is an M-surjection for some M. 

Q. How many surjections of length N ?

1 1 1
1 1 2
1 2 1
1 2 2
1 2 3
1 3 2
2 1 1
2 1 2
2 1 3
2 2 1
2 3 1
3 1 2
3 2 1

R3 = 13

1 1  
1 2
2 1
  R2 = 3

1   

R1 = 1

EGF equation

94(a) = (La � �)4
EGF equation

Coefficients
Best handled with 

complex asymptotics
(stay tuned for Part II)

Coefficients
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Balls and urns

Q. Probability that no urn has more than one ball ?

Q. Probability that no urn is empty ?

Q. How many empty urns ?

Q. How many urns with k balls ? 

N rolls of an M-sided die, count number of occurrences of each value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

9 12 19 3 5 20 10 17 16 20 13 8 2 13 9 2 15 17 3 9 11 7 18 2 10 1 20 12 10 8 19 5 5 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Classical occupancy problems for an M-word of length N:

N balls
M urns

35



Theorem. The probability that a value occurs k times in a random M-word of length N is

                                                                                

For α = N/M fixed and k = O(1), this is

Proof.  [See Lecture 4.]

Occupancy distribution (classical) N balls, M urns
Pr {given urn has k balls}

36

Binomial distribution for N = 104 and M = 103 (α = 10). Poisson approximation for N = 104 and M = 103 (α = 10).

Binomial distribution

�
5
R

�� �
4

�R�
� � �

4

�5�R

Poisson approximation�RL��

R!
+ V(�)



Application: Hashing algorithms

Goal: Provide efficient ways to
• Insert key-value pairs in a symbol table.
• Search the table for the pair corresponding to a given key.

Strategy
• Develop a hash function that maps each key into value between 0 and M −1.
• Develop a collision strategy to handle keys that hash to the same value.

37

Basic algorithms (stay tuned)
• Separate chaining—keep M linked lists, one for each hash value.
• Linear probing—use an array and scan for empty spots on collision.

Model
• Uniform hashing assumption—hash function maps each key in to a random value.



Application: Hashing with separate chaining

38

Keep M linked lists, one for each hash value. 

Section 3.4

a random word!



Application: Hashing with separate chaining

Q. Average number of balls in each urn ?

Throw N balls into M urns, one at a time.

39

1 2 3 4 5 6 7 8 9

A. Obvious: N/M

Q. Probability that a given urn has k balls ?

A. 

Not much help.

But what are the chances 
they're distributed evenly?



Application: Hashing with separate chaining

Q. If I make sure that N/M < α, then the average number of probes for a search is < α.

     What is the chance that a search will use more than 5α probes (under the UHA) ?

40

A. For α=10, less than .0000000000000000054

Thanks!

??

A. �

R>��

�RL��

R!
= L��

�

R>��

�R

R!
< L��

�

R>��

(L�)R

(��)R

< �L��
�L
�

���

< L��
�

R>��

�R

(R/L)R

Stirling's formula

% bc - l
scale = 20
2*e(-10)*e(50)/5^50
.00000000000000000530



Resolve collisions by moving right one urn.

Application: Hashing with linear probing

Q. Average number of collisions ?

Throw N balls into M urns, one at a time.

41

1 2 3 4 5 6 7 8 9



Application: Hashing with linear probing

Q. Average number of probes to find one of N keys?

Section 3.4

Goal: Provide efficient ways to
• Insert key-value pairs in a symbol table.

•Search the table for a given key.

Strategy
•Use a hash function as with separate chaining.

•Maintain a table size M that holds N<M pairs.

•Probe the next position in the table on collision.

42

when table is full (N = M −1)= 8(4) �
�
�4/�

when table is reasonably sparse (N/M is not close to 1)� �
� � �

A.                                                  (Knuth, 1962)
�

R��

5
4
5� �
4

. . .
5� R+ �

4
Difficult proof

Landmark result

pp. 509—518
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T O  T H E

R O B E R T  S E D G E W I C K 
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A footnote

“The author cannot resist inserting a biographical note at 
this point: I first formulated the following derivation in 1962
... Since this was the first nontrivial algorithm I had ever 
analyzed satisfactorily, it had a strong influence on the 
structure of these books.”

The only footnote in Knuth’s books (p. 529 vol. 3):

43

Q. Average number of probes to find one of N keys?

A.                                                  (Knuth, 1962)
�

R��

5
4
5� �
4

. . .
5� R+ �

4

The origin of the analysis of algorithms



Another footnote

Exercise 8.39 Use the symbolic method to analyze linear probing*.

44

“The temptation to include one footnote at this point can’t 
be resisted: We don’t know the answer to this exercise!”

The only footnote in Sedgewick-Flajolet (p. 452):

p. 452

A. Deep connections to properties of random graphs, tree inversions, gambler’s 
ruin, path length in trees, properties of mappings, and other classic problems. 
Explained by an Airy law. 

Linear probing and graphs  (Knuth, 1997) 
On the analysis of linear probing hashing  (Flajolet, Viola, and Poblete, 1997)

ALGORITHMS
ANALYSIS

OF

S E C O N D  E D I T I O N

A N  I N T R O D U C T I O N 
T O  T H E

R O B E R T  S E D G E W I C K 
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p. 518

A challenge to students and researchers
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Mappings

Q. How many N-words of length N ? 

1 1 1
1 2
2 1
2 2

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3

2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3
2 3 1
2 3 2
2 3 3

3 1 1
3 1 2
3 1 3
3 2 1
3 2 2
3 2 3
3 3 1
3 3 2
3 3 3

1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 2 1
1 1 2 2
1 1 2 3
1 1 2 4
1 1 3 1
1 1 3 2
1 1 3 3 
1 1 3 4 
1 1 4 1
1 1 4 2
1 1 4 3 
1 1 4 4
1 2 1 1
...

A. N N 

2 1 1 1
2 1 1 2
2 1 1 3
2 1 1 4
2 1 2 1
2 1 2 2
2 1 2 3
2 1 2 4
2 1 3 1
2 1 3 2
2 1 3 3 
2 1 3 4 
2 1 4 1
2 1 4 2
2 1 4 3 
2 1 4 4
2 2 1 1
...

3 1 1 1
3 1 1 2
3 1 1 3
3 1 1 4
3 1 2 1
3 1 2 2
3 1 2 3
3 1 2 4
3 1 3 1
3 1 3 2
3 1 3 3 
3 1 3 4 
3 1 4 1
3 1 4 2
3 1 4 3 
3 1 4 4
3 2 1 1
...

4 1 1 1
4 1 1 2
4 1 1 3
4 1 1 4
4 1 2 1
4 1 2 2
4 1 2 3
4 1 2 4
4 1 3 1
4 1 3 2
4 1 3 3 
4 1 3 4 
4 1 4 1
4 1 4 2
4 1 4 3 
4 1 4 4
4 2 1 1
...

46

M1 = 1

M2 = 4

M3 = 27

M4 = 64



7

Digraph model for mappings

Every mapping corresponds to a digraph.
• N vertices, N edges.

• Every node has outdegree 1.

• Every node has indegree between 0 and N.

6

19
5

2 8

11

13

16
12

24

10

27

29

322

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

9 12 29 33 5 20 30 37 26 20 13 8 2 33 29 2 35 37 33 9 35 21 18 2 25 1 20 33 23 18 29 5 5 9 11 5 11

18

17 21

35

33 30

25

23

15

37

36

34

32

26

1428
19

20

4

47

Natural questions about random mappings
• Probability that the digraph is connected ?

• How many connected components ?

• How many nodes are on cycles ?



Cayley trees

48

Q. How many different labeled rooted unordered trees of size N ?

A. NN−1 via Lagrange inversion (see next slide)

1

C1 = 1

C2 = 2

C3 = 9

1

2

2

1

1

2

3

1

3

2

2

1

3

3

2

1

3

1

2

2

3

1

1

2 3

2

1 3

3

1 2

1

Short form: N-words grouped with  unlabeled trees 

1 1
2 2

1 1 2
1 3 1
2 2 1
2 3 3
3 1 3
3 2 2

1 1 1
2 2 2
3 3 3



Ex. = (−�)U−�M(\) =
\

�− \
NU =

�
U
[\U−�](�− \)U

∑

U≥�

(−�)UaU =
a

�+ a ✓

Lagrange inversion
is a classic method for computing a functional inverse.

49

Def. The inverse of a function f (u) = z is the function u = g (z). 

Analytic combinatorics context: A widely applicable analytic transfer theorem

Lagrange Inversion Theorem.

If a GF                           satisfies the equation z = f (g (z))

with f (0) = 0 and f ' (0) ≠ 0 then 

Proof. Omitted (best understood via complex analysis. 

N(a) =
�

U��

NUaU

NU =
�
U

[\U��]
� \
M(\)

�U
.

Ex. M(\) =
\

�− \
N(a) =

a
�+ a



Lagrange Inversion Theorem (Bürmann form).

If a GF                           satisfies the equation z = f (g (z))

with f (0) = 0 and f ' (0) ≠ 0 then, for any function H(u), 

Lagrange-Bürmann inversion

50

Stay tuned for applications.

[aU]/(N(a)) =
�
U

[\U��]/�(\)
� \
M(\)

�U

N(a) =
�

U��

NUaU

A more general (and more useful) formuation:

H(u) = u gives the basic theorem



Lagrange inversion: classic application
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Class T, the class of all binary trees

Size  The number of external nodes

How many binary trees with N external nodes?

OGF equation

Construction ; = A+ ;� ;

;(a) = a + ;(a)�

a = ;(a) � ;(a)�

✓

Extract coefficients
 by Lagrange inversion

with f (u) = u − u2 
[a5];(a) =

�
5

[\5��]
� �
� � \

�5

=
�
5

�
�5� �
5� �

� Take M = N and k = N − 1 in

�
(�− a)4

=
∑

R≥�

(
R+4− �
4− �

)
aR



Construction "a tree is a root connected to a set of trees"* = A ! (:,;(*))

Cayley trees
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Class C, the class of labeled rooted unordered trees

EGF

Example

EGF equation *(a) = aL*(a)

*(a) =
�

J�C

a|J|

|J|! �
�

5��

*5
a5

5!

7

1

3

8

2 5

6

4

6 2 1 1 2 2 5 1

=
�
5

[\5��]L\5 =
55��

5!

*5 = 5![a5]*(a) = 55��

✓

Extract coefficients
 by Lagrange inversion

with f (u) = u/eu 
[a5]*(a) =

�
5

[\5��]
� \
\/L\

�5



Connected components in mappings
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Q. How many different cycles of Cayley trees of size N ?

1

Y1 = 1

Y2 = 3

Y3 = 17

1 1
2 2

1 1 2
1 3 1
2 2 1
2 3 3
3 1 3
3 2 2

1 1 1
2 2 2
3 3 3

A.                       (see next slide)� 55�
��

�5

2 1

2 1 1
2 1 2
2 3 2
3 1 1
3 3 1
3 3 2

2 3 1
3 1 2



Construction @ = *@*(*) "a component is a cycle of trees"

Connected components in mappings
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Class Y, the class of cycles of Cayley trees

EGF

Example 7

1

11

8

2 9

6

4
1 10 2 1 10 2 9 1 2 3 1

@(a) =
�

`�@

a|`|

|`|! �
�

5��

@5
a5

5!

8

5

3

10

EGF equation @(a) = ln
�

� � *(a)

=
�

��R<5

5R��

R!
=

�

��R�5

55�R��

(5� R)!

@5 = 5![a5]@(a) = 55��
�

��R�5

5!

5R(5� R)!
= 55��8(5) � 55

�
��

�5

Extract coefficients
 by Lagrange inversion

with f (u) = u/eu 
and H(u) =ln (1/(1-u))

[a5]@(a) =
�
5

[\5��]
�

� � \
L\5



Construction 4 = :,;(*@*(*)) "a mapping is a set of cycles of trees"

Mappings
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Class M, the class of mappings

EGF

Example 7

1

11

12

13 9

6

4
1 2 13 1 10 13 9 7 7 3 1 1 10 10

14

5

3

10

4(a) =
�

T�4

a|T|

|T|! �
�

5��

45
a5

5!

2 8

EGF equation 4(a) = exp
�
ln

�
� � *(a)

�
=

�
� � *(a)

=
�

��R�5

(5� R)
5R��

R!
=

�

��R�5

5R

R!
�

�

��R�5

5R��

(R� �)!
=
55

5!

45 = 55
✓

Extract coefficients
 by Lagrange-Bürmann

with f (u) = u/eu 
and H(u) = 1/(1-u)

[a5]4(a) =
�
5

[\5��]
�

(� � \)�
L\5



Rho length
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5

26

59

92

50

83

17

Ex. f (x ) = x 2 + 1 mod 99

2

10

3

Q. Algorithm to compute rho length ?

A. Floyd's "tortoise-and-hare" algorithm

int a = x, b = f(x), t = 0;
while (a != b)
{ a = f(a); b = f(f(b)); t++; }
// rho-length of f(a) is between t and 2t

Floyd's algorithm

rho-length of f(3) is 10

Def. The rho-length of a function at a given point is the number of iterates until it repeats. 

b

a

a

b

a

b

a

b

a

b

b

a

b

a

t = 0t = 1t = 2t = 3t = 4t = 5t = 6

A. Symbol table? NO, rho length may be huge.



Ex 1. Number of components

Construction 4 = :,;(\*@*(*))

Mapping parameters
are available via EBGFs based on the same constructions
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Q. # of components?

Q. # of trees?

Q. Tail length?

Q. Rho length?

A.                

A. 

A. 

A. 

ln
�
5�

�5�
�5/�

Stay tuned to Part II for asymptotics.

EGF equation 4(a) = exp
�
\ ln

�
� � *(a)

�
=

�
(� � *(a))\

Ex 2. Number of trees (nodes on cycles)

Construction 4 = :,;(*@*(\*))

EGF equation 4(a) = exp
�
ln

�
� � \*(a)

�
=

�
� � \*(a)

�
�
�5/�



Application: Pollard's rho-method for factoring
factors an integer N by iterating a random quadratic function to find a cycle.
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long a = (long) (Math.random()*N), b = a;
long c = (long) (Math.random()*N), d = 1;
while (d == 1)
{
  a = (a*a + c) % N;
  b = (b*b + c)*(b*b + c) + c % N;
  if (a > b) d = gcd((a - b) % N, N);
  else       d = gcd((b - a) % N, N);
}
// d is a factor of N.

Pollard's algorithm
Q. How does it work ?

A. Iterate f (x) = x 2 + c until finding      
    a cycle ala Floyd's algorithm.
    Use a random value of c and start
    at a random point.

a 3 10 2 5
b 3 2 26 59
d 1 1 1 3

Ex. N = 99 (with c = 1)

✓

need arbitrary-precision
integer arithmetic 
package in real life



Application: Pollard's rho-method for factoring
factors an integer N by iterating a random quadratic function to find a cycle.
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long a = (long) (Math.random()*N), b = a;
long c = (long) (Math.random()*N), d = 1;
while (d == 1)
{
  a = (a*a + c) % N;
  b = (b*b + c)*(b*b + c) + c % N;
  if (a > b) d = gcd((a - b) % N, N);
  else       d = gcd((b - a) % N, N);
}
// d is a factor of N.

Pollard's algorithm
Q. How does it work ?

A. Iterate f (x) = x 2 + c until finding      
    a cycle ala Floyd's algorithm.
    Use a random value of c and start
    at a random point.

Q. Why does it work ?

A. Easy if you know number theory.

Q. How many iterations ?

A.                 if random quadratic functions are asymptotically equivalent to random mappings.�
�
�5/�

conjectured to be true
but still open

"magic" if you don't
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Exercise 9.5

Being really sure that the birthday trick will work.
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ALGORITHMS
ANALYSIS

OF

S E C O N D  E D I T I O N

A N  I N T R O D U C T I O N 
T O  T H E

R O B E R T  S E D G E W I C K 
P H I L I P P E  F L A J O L E T

.



Exercise 9.38

Abel's binomial theorem (easier than it looks).
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ALGORITHMS
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OF

S E C O N D  E D I T I O N

A N  I N T R O D U C T I O N 
T O  T H E
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P H I L I P P E  F L A J O L E T

.



Exercise 9.99

[Not in the book, but should be there.]
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ALGORITHMS
ANALYSIS

OF

S E C O N D  E D I T I O N

A N  I N T R O D U C T I O N 
T O  T H E

R O B E R T  S E D G E W I C K 
P H I L I P P E  F L A J O L E T

.Exercise 9.99   Show that the probability that a random mapping of size N 
has no singleton cycles is ~N/e, the same as for permutations (!).



Assignments
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ALGORITHMS
ANALYSIS

OF

S E C O N D  E D I T I O N

A N  I N T R O D U C T I O N 
T O  T H E

R O B E R T  S E D G E W I C K 
P H I L I P P E  F L A J O L E T

Experiment 9.2.  [Exercise 9.51] Write a program to find the rho 
length and tree path length of a random mapping. Generate 1000 
random mappings for N as large as you can and compute the 
average number of cycles, rho length, and tree path length.

1. Read pages 473-542 in text.

Experiment 9.1. Implement linear probing hashing and run 
experiments for N = 1 million and M = 900,000 to validate 
the prediction from Knuth's analysis that about 5.5 probes 
should be needed, on average, for  a successful search.

2. Run experiments to validate mathematical results.

3. Write up solutions to Exercises 9.5, 9.38, and 9.99.
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