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8. Strings and Tries



Orientation
Second half of class

• Surveys fundamental combinatorial classes.

• Considers techniques from analytic combinatorics to study them .

• Includes applications to the analysis of algorithms.
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chapter combinatorial classes type of class type of GFtype of GF

6 Trees unlabeledunlabeled OGFs

7 Permutations labeledlabeled EGFs

8 Strings and Tries unlabeledunlabeled OGFs

9 Words and Mappings labeledlabeled EGFs

ALGORITHMS
ANALYSIS

OF

S E C O N D  E D I T I O N

A N  I N T R O D U C T I O N 
T O  T H E

R O B E R T  S E D G E W I C K 
P H I L I P P E  F L A J O L E T

Note: Many more examples in book than in lectures.
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8. Strings and Tries
•Bitstrings with restrictions
•Languages
•Tries
•Trie parameters

8a.Strings.Bits



Bitstrings

10111110100101001100111000100111110110110100000111100001100111011101111101011000
11010010100011110100111100110100111011010111110000010110111001101000000111001110
11101110101100111010111001101000011000111001010111110011001000011001000101010010
10111000011011000110011101110011011011110111110011101011000011001100101000000110
10101100111010001101101110110010010110100101001101111100110000001111101000001111
10000010011000001100011000100001111001110011110000011001111110011011000100100111
10001010101110001110101100000110000011101010100010110001001101111110011110110010
00111011001011100100001100001001111010010011001100001100111010011010000101000111
00111111100110110111011011101010011011011100011111111010111010011000000100101110
10101000111100001010000011001000001101010010100011001100101010101110110111111110
11000000101111011011000101011010110010010000011101110010000001101010000000101000
11101111011011111011111111110100111010010111111011101001110100011000100100010010
00111111100111010110111110000100010001110000111010111100101011111001110101011111
00000010001111001110110101011100110000011110010010010101001100110011010011011110
10111100101000100110111100011001000111001000010100110101110111111010110010011100
01010010001011110110000110110101011010101111011001101101101000100110001111100111
01110110010011001110111000101010001101101001111111001101010111010001100110100001
00100011011010001100011111110011100110011110010110001100110011010001110111011101
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Q. What is the probability that an N-bit random bitstring does not contain 000?

Q. What is the expected wait time for the first occurrence of 000 in a random bitstring?

4



“a binary string is a sequence
of 0 bits and 1 bits”

Symbolic method for unlabelled objects (review)

type class size GF

0 bit 1 z

1 bit 1 z

Atoms

5

Class B, the class of all binary strings

Size |b |, the number of bits in b

OGF

Warmup: How many binary strings with N bits?

)(a) =
∑

I∈)

a|I| =
�

5��

)5a5

A�

A�

Construction ) = :,8(A� + A�)

OGF equation )(a) =
�

�− �a

✓[a5])(a) = �5



“a binary string is empty or
a bit followed by a binary string”

Symbolic method for unlabelled objects (review)

type class size GF

0 bit 1 z

1 bit 1 z

Atoms

6

Class B, the class of all binary strings

Size |b |, the number of bits in b

OGF

Warmup: How many binary strings with N bits (alternate proof)?

)(a) =
∑

I∈)

a|I| =
�

5��

)5a5

A�

A�

✓[a5])(a) = �5

Construction ) = ,+ (A� + A�)× )

OGF equation )(a) = �+ �a)(a)

)(a) =
�

�− �aSolution



“a binary string with no 00 is either 
empty or 0 or it is 1 or 01 followed 

by a binary string with no 00”

Symbolic method for unlabelled objects (review)

7

Ex. How many N-bit binary strings have no two consecutive 0s?

Class B00, the class of binary strings with no 00

OGF )��(a) =
∑

I∈)��

a|I|

Construction )�� = ,+ A� + (A� + A� × A�)× )��

OGF equation )��(a) = �+ a+ (a+ a�))��(a)

Solution )��(a) =
�+ a

�− a− a�

=
��
�
�

�5 � J��5� ^P[O

�
��

.
= �.�����

J�
.
= �.�����

✓[a5])��(a) = -5 + -5+� = -5+� 1, 2, 5, 8, 13, ...Extract cofficients



“a string with no 0P is a string of 0s 
of length <P followed by an empty 
string or a 1 followed by a string 

with no 0P ”

Construction )7 = A<7(,+ A�)7)

Binary strings without long runs of 0s

8

Ex. How many N-bit binary strings have no runs of P consecutive 0s?

Class BP, the class of binary strings with no 0P

OGF )7(a) =
∑

I∈)7

a|I|

OGF equation )7(a) = (�+ a+ . . .+ a7)(�+ a)7(a))

Solution )7(a) =
�− a7

�− �a+ a7+�

Extract cofficients [a5])R(a) � JR�5
R ^OLYL

�
�R PZ�[OL�KVTPUHU[�YVV[�VM � � �a+ aR

JR = BL_WSPJP[�MVYT\SH�H]HPSHISLD

See “Asymptotics” lecture

Bob Sedgewick
1/𝛽  is the smallest root of

Bob Sedgewick
k



Binary strings without long runs

9

Theorem. The number of binary strings of length N with no runs of P 0s is
                where cP and βP are easily-calculated constants.

� J7�5
7

sage: f2 = 1 - 2*x + x^3
sage: 1.0/f2.find_root(0, .99, x)
1.61803398874989
sage: f3 = 1 - 2*x + x^4
sage: 1.0/f3.find_root(0, .99, x)
1.83928675521416
sage: f4  = 1 - 2*x + x^5
sage: 1.0/f4.find_root(0, .99, x)
1.92756197548293
sage: f5 = 1 - 2*x + x^6
sage: 1.0/f5.find_root(0, .99, x)
1.96594823664510
sage: f6 = 1 - 2*x + x^7
sage: 1.0/f6.find_root(0, .99, x)
1.98358284342432

β2

β3

β4

β5

β6



Information on consecutive 0s in GFs for strings

Theorem. Probability that an N-bit random bitstring has no 0P :

10

Theorem. Expected wait time for the first 0P in a random bitstring:

:7(a) =
�

Z�S7

a|Z| =
� � a7

� � �a + a7+� =
�

5��

{# VM�IP[Z[YPUNZ�VM�SLUN[O 5 ^P[O�UV �7}a5

:7(a/�) =
�

5��

�
{# VM�IP[Z[YPUNZ�VM�SLUN[O 5 ^P[O�UV�Y\UZ�VM 7 �Z}/�5

�
a5

:7(�/�) =
�

5��

{# VM�IP[Z[YPUNZ�VM�SLUN[O 5 ^P[O�UV�Y\UZ�VM 7 �Z}/�5

=
�

5��

7Y {�Z[ 5 IP[Z�VM�H�YHUKVT�IP[Z[YPUN�OH]L�UV�Y\UZ�VM 7 �Z}

=
�

5��

7Y {WVZP[PVU�VM�LUK�VM�ÄYZ[ �7 PZ > 5 } = ,_WLJ[LK�WVZP[PVU�VM�LUK�VM�ÄYZ[ �7

[a5]:7(a/�) � J7(�7/�)5

:7(�/�) = �7+� � �



Consecutive 0s in random bitstrings

P SP(z) approx. probability of no 0P in N random bits approx. probability of no 0P in N random bits approx. probability of no 0P in N random bits wait time

N 10 100

1 .5N 0.0010 <10−30 2

2 1.1708 × .80901N 0.1406 <10−9 6

3 1.1375 × .91864N 0.4869 0.0023 14

4 1.0917 × .96328N 0.7510 0.0259 30

5 1.0575 × .98297N 0.8906 0.1898 62

6 1.0350 × .99174N 0.9526 0.4516 126

11

� � a
� � �a + a�

� � a�

� � �a + a�

� � a�

� � �a + a�

� � a�

� � �a + a�

� � a�

� � �a + a�

� � a�

� � �a + a�



Validation of mathematical results
is always worthwhile when analyzing algorithms

12

public class TestOccP
{
   public static int find(int[] bits, int k)
   // See code at right.

   public static void main(String[] args)
   {
      int w = Integer.parseInt(args[0]);
      int maxP = Integer.parseInt(args[1]);
      int[] bits = new int[w];
      int[] sum = new int[maxP+1];

      int T = 0;
      int cnt = 0;
      while (!StdIn.isEmpty())
      {
         T++;
         for (int j = 0; j < w; j++)
            bits[j] = BitIO.readbit();
         for (int P = 1; P <= maxP; P++)
            if (find(bits, P) == bits.length) sum[P]++;
      }
     
      for (int P = 1; P <= maxP; P++)
          StdOut.printf("%8.4f\n", 1.0*sum[P]/T);
      StdOut.println(T + “trials”);
   }
}

public static int find(int[] bits, int P)
{
   int cnt = 0;
   for (int i = 0; i < bits.length; i++)
   {         
      if (cnt == P) return i;
      if (bits[i] == 0) cnt++; else cnt = 0;
   }         
   return bits.length;
}

 N/w trials.

• Read w-bits from StdIn

• For each P, check for 0P

Print empirical probabilities.

% java TestOccP 100 6 < data/random1M.txt
  0.0000
  0.0000
  0.0004
  0.0267
  0.1861
  0.4502
10000 trials

✓

.0000

.0000

.0023

.0259

.1898

.4516

predicted 
by theory



Wait time for specified patterns

10111110100101001100111000100111110110110100000111100001100111011101111101011000
11010010100011110100111100110100111011010111110000010110111001101000000111001110
11101110101100111010111001101000011000111001010111110011001000011001000101010010
10111000011011000110011101110011011011110111110011101011000011001100101000000110
10101100111010001101101110110010010110100101001101111100110000001111101000001111
10000010011000001100011000100001111001110011110000011001111110011011000100100111
10001010101110001110101100000110000011101010100010110001001101111110011110110010
00111011001011100100001100001001111010010011001100001100111010011010000101000111
00111111100110110111011011101010011011011100011111111010111010011000000100101110
10101000111100001010000011001000001101010010100011001100101010101110110111111110
11000000101111011011000101011010110010010000011101110010000001101010000000101000
11101111011011111011111111110100111010010111111011101001110100011000100100010010
00111111100111010110111110000100010001110000111010111100101011111001110101011111
00000010001111001110110101011100110000011110010010010101001100110011010011011110
10111100101000100110111100011001000111001000010100110101110111111010110010011100
01010010001011110110000110110101011010101111011001101101101000100110001111100111
01110110010011001110111000101010001101101001111111001101010111010001100110100001
00100011011010001100011111110011100110011110010110001100110011010001110111011101

23
 9
29
 5
13
 1
24
18
42
 5
 2
70
25
 0
24
 7
23
 3

Expected wait time for the first occurrence of 000:  17.9

13
Expected wait time for the first occurrence of 001:   6.0

 9
 4
12
 8
 6
 4
 2
 0
 0
 6
 6
30
 0
 4
 6
 4
 7
 0

Are these bitstrings random??



Autocorrelation

14

The probability that an N-bit random bitstring does not contain 0000 is  ~1.0917 × . 96328N

The expected wait time for the first occurrence of 0000 in a random bitstring is 30.

Q. Do the same results hold for 0001?
A. NO!

10111110100101001100111000100111110110110100000111100001

0001 occurs much 
earlier than 0000

Q. What is the probability that an N-bit random bitstring does not contain 0001?

Q. What is the expected wait time for the first occurrence of 0001 in a random bitstring?

Observation. Consider first occurrence of 000.

•0000 and 0001 equally likely, BUT

•mismatch for 0000 means 0001, so need to wait four more bits

•mismatch for 0001 means 0000, so next bit could give a match.



Constructions for strings without specified patterns

Sp — binary strings that do not contain p

Tp — binary strings that end in p
        and have  no other occurrence of p

10111110101101001100110101001010

10111110101101001100110000011111

Cast of characters:

First construction

• Sp and Tp are disjoint

• the empty string is in Sp

• adding a bit to a string in Sp gives a string in Sp  or Tp

15

p — a pattern 101001010p

Sp

Tp

:W + ;W = , + :W � {A� + A�}



Constructions for bitstrings without specified patterns

Every pattern has an autocorrelation polynomial

• slide the pattern to the left over itself.

• for each match of i trailing bits with the leading bits include a term z |p| − i 

16

J���������(a) = � + a� + a�

a�

a�

a�

autocorrelation 
polynomial

         101001010
         101001010
        101001010  
       101001010 
      101001010 
     101001010 
    101001010 
   101001010 
  101001010
 101001010



Constructions for bitstrings without specified patterns

Second construction

• for each 1 bit in the autocorrelation of any string in Tp add a “tail”

• result is a string in Sp followed by the pattern 

17

:W � {W} = ;W �
�

JP �=�

{[P}

10111110101101001100110101001010a string in Tp

p 101001010

10111110101101001100110101001010

1011111010110100110011010100101001010

101111101011010011001101010010101001010

strings in Sp

first tail 
is null



Constructions :W + ;W = , + :W � {A� + A�} :W � {W} = ;W �
�

JP �=�

{[P}

Bitstrings without specified patterns

18

How many N-bit strings do not contain a specified pattern p ?

Classes Sp — the class of binary strings with no p

Tp — the class of binary strings that end in p
         and have no other occurence

OGFs :W(a) =
�

Z�:W

a|Z|

;W(a) =
�

Z�;W

a|Z|

Solution :W(a) =
JW(a)

a7 + (� � �a)JW(a)

OGF equations :W(a) + ;W(a) = � + �a:W(a) :W(a)a7 = ;W(a)JW(a)

Extract cofficients [a5]:W(a) � JW�5
W ^OLYL

�
�W PZ�[OL�KVTPUHU[�YVV[�VM a7 + (� � �a)JW(a)
JW = BL_WSPJP[�MVYT\SH�H]HPSHISLD

See “Asymptotics” lecture

Bob Sedgewick
1/𝛽  is the smallest root of

Bob Sedgewick
p



Autocorrelation for 4-bit patterns

p auto-
correlation OGF Probability that p does not occur 

in N random bits 
Probability that p does not occur 

in N random bits 
Probability that p does not occur 

in N random bits 
wait 
time

N 10 100

0000 1111 1111 . 96328N 0.7510 0.0259 30

0001 0011 0111
1000 1100 1110

1000 .91964N 0.4327 0.0002 16

0010 0100 0110
1001 1011 1101

1001 .93338N 0.5019 0.0010 18

0101 1010 1010 .94165N 0.5481 0.0024 20

constants omitted
(close to 1)

off by < 10%
but indicativeExample. In 100 random bits,

 0000 is ~10 times more likely to be absent than 0101
            ~100 times more likely to be absent than 0001.

19

� � a�

� � �a + a�

�
� � �a + a�

� + a�

� � �a + a� � a�

� + a�

� � �a + a� � �a� + a�
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8. Strings and Tries
•Bitstrings with restrictions
•Languages
•Tries
•Trie parameters

8b.Strings.Sets



Formal languages and the symbolic method

Definition. A formal language is a set of strings.

Q. How many strings of length N in a given language?

Remark. The symbolic method provides a systematic approach to this problem.

A. Use an OGF to enumerate them.

Issue. Ambiguity.

21

:(a) =
�

Z�S
a|Z|



Regular expressions

22

Theorem. Let A and B be unambiguous REs with OGFs A(z) and B(z). If A + B, AB, and A* 
are also unambiguous, then

                                                               enumerates A + B

                                                               enumerates AB

                                                               enumerates A*

Proof. 
Same as for symbolic method—different notation.

((a))(a)

((a) + )(a)

�
� � ((a)

Corollary. OGFs that enumerate regular languages
                  are rational.

Proof. 
1. There exists an FSA for the language. 
2. Kleene’s theorem gives an unambiguous RE for 
the language defined by any FSA. a* | (a*ba*ba*ba*)*

OGF for an unambiguous RE is  
rational — can be written as 
the ratio of two polynomials.



RE. (� + �� + ��� + ���)�(� + � + �� + ��)

Regular expressions

Example 1. Binary strings with no 000

✓

23

OGF. :�(a) =
� + a + a� + a�

� � (a + a� + a� + a�)

=

� � a�

� � a

� � a
� � a�

� � a

=
� � a�

� � �a + a�

Expansion. [a5]:�(a) � J��5
� ^P[O

�
��

.
= �. ����

J�
.
= �.� ���



Regular expressions

Example 2. Binary strings that represent multiples of 3

✓

24

RE. (�(����)����)�

OGF. +�(a) =
�

� � a�

� � a�

� � a

� �
� � a

� =
�

� � a�

� � a� a�

= � � a�

(� � �a)(� + a)

Expansion. [a5]+�(a) � �5��

�

11

110

1001

1100

1111

10010

10101

11000

11011

11110

100001

100100

...



Context-free languages

25

Theorem. Let <A> and <B> be nonterminals in an unambiguous CFG with OGFs A(z) and 

B(z). If <A> | <B> and <A><B> are also unambiguous, then

                                                               enumerates <A> | <B>

                                                               enumerates <A><B>

Proof. 

Same as for symbolic method—different notation.

((a))(a)

((a) + )(a)

Corollary. OGFs that enumerate unambiguous CF languages are algebraic.

Proof. 
"Gröbner basis" elimination—see text. An algebraic function is a function that satisfies 

a polynomial equation whose coefficients are 
polynomials with rational coefficients



Context-free languages
The unlabelled constructions we have considered are CFGs, using different notation.

26

class construction CFG OGF (algebraic)

Binary Trees T = E + T × Z × T    <T> := <E>
   <T> := <T><Z><T>

Bitstrings B = E + (Z0 + Z1) ×  B         
  <B> := <E>
  <Y> := <Z0> | <Z1>
  <B> := <Y> × <B>

Bitstrings 
with no 00

B00 = (E + Z0) 
      × (E + Z1 ×  B00)

  <Y0> := <E> | <Z0>
  <Y1> := <Z1> × <B00>
  <Y2> := <E> + <Y1>
  <B00> := <Y0> | <Y2>

Note 1. Not all CFGs correspond to combinatorial classes (ambiguity).

Note 2. Not all constructions are CFGs (many other operations have been defined).

;(a) = � + a;(a)�

)(a) = �+ �a)(a)

)��(a) = � + a

+ (a + a�))��(a)



Walks

Definition. A walk is a sequence of + and − characters.                          

+-+++-+---+--+--

Sample applications:

• Parenthesis systems

• Gambler’s ruin problems

• Inversions in 2-ordered permutations (see text)

+-+++-+---+--+--

()((()()))())())

Q. How many different walks of length N ?                         

Q. How many different walks of length N where every prefix has more + than − ?                         

27



Unambiguous decomposition of walks

28

<U>:

•  start with +

•  end at +1

•  never hit 0

<U> := <+> | <U><U><−>

U U

<D>:

•  start with −

•  end at −1

•  never hit 0

<D> := <−> | <D><D><+>

D
D

<S>:

•  begin at 0

•  end at 0

<S> := <U><−><S> | <D><+><S>

U

S

S

D



Context-free languages

Example. Walks of length 2N that start at and return to 0 

CFL. <S> := <U><−><S> | <D><+><S> | ε
<U> := <U><U><−> | <+>
<D> := <D><D><+> | <−>

Elementary example, but extends to 
similar, more difficult problems

29

OGFs. :(a) = a<(a):(a) + a+(a):(a) + �

<(a) = a+ a<�(a)

+(a) = a+ a+�(a)

Solve simultaneous equations. <(a) = +(a) =
�
�a

�
� �

�
� � �a�

�

:(a) =
�

� � �a<(a)
=

��
� � �a�

Expand. [a�5]:(a) =

�
�5
5

�
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8. Strings and Tries
•Bitstrings with restrictions
•Languages
•Tries
•Trie parameters

8c.Strings.Tries



Tries

Definition. A trie is a binary tree with the following properties:

•External nodes may be void (■)
•Siblings of void nodes are not void (● or □).

31

internal
node

external
nodes

Ex. Give a recursive definition.

void
external
nodes

disallowed



Tries and sets of bitstrings 

32

0

1

0

1

0

represents
00110

represents
1010

0

0

1

Each trie corresponds to a set of bitstrings.

•Each nonvoid external node represents one bitstring.

•Path from the root to a node defines the bitstring

1

1

no string with prefix 11110 
is in the set of strings 

represented by this trie

1

1

0



Note: Works only for prefix-free sets of bitstrings (or use void/nonvoid internal nodes).

Tries and sets of bitstrings 

33

0101
0110
11

101
110

01
10

010
011
10
1111

10
11

0
111

0
1

00101
00110
011
1010
1011
110
11111

1 0

1

11

1

no member is a prefix of another



Tries and sets of bitstrings (fixed length)

34

If all the bitstrings in the set are the same length, it is prefix-free.

0011
1010
1111

represents
0011

represents
1010

represents
1111



Trie applications

Searching and sorting

• MSD radix sort

• Symbol tables with string keys

• Suffix arrays

Data compression

•Huffman and prefix-free codes

•LZW compression

Decision making

•Collision resolution

•Leader election

35

Application areas: 
Network systems
Bioinformatics
Internet search
Commercial data processing



Trie application 1: Symbol tables

36

Search

• If at nonvoid external node and no bits left in bitstring, report success.

• If at void external node, report failure.

• If leading bit is 0, search in the left subtrie (using remainder of string). 

• If leading bit is 1, search in the right subtrie (using remainder of string).

✓ ✗

Ex:  search for 0011 Ex:  search for 10110

1

0

0

1

1

0

11

Q. Expected search time ?                         



Trie application 1: Symbol tables

37

Insert

• Search to void external node (prefix-free violation if nonvoid external node hit).

• Add internal nodes (each with one void external child) for each remaining bit.

Ex:  insert 01110 0

1

1

1

0

variant: 
convert the void external node 
to a nonvoid external node that 
contains a pointer to the "tail"

Q. How many void nodes ?                         



Trie application 2: Substring search index

38

Problem: Build an index that supports fast substring search in a given string S.

A C C T A G G C C T

0 1 2 3 4 5 6 7 8 9

Ex.

Q. Is ACCTA in S?

A. Yes, starting at 0.

Q. Is CCT in S?

A. Yes, in multiple places.

Q. Is TGA in S?

A. No.

S

Solution: Use a suffix multiway trie.

Application 1: Search in genomic data.

Application 2: Internet search.



Trie application 2: Substring search index
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To build the suffix multiway trie associated with a string S

• Insert the substrings starting at each position into an initially empty trie.

• Associate a string index with each nonvoid external node.

a prefix-free set

A C T G A C T G A C T G A C T G

0 4

1

2 3 6 5

A C T G

A C C T A G G C C T

0 1 2 3 4 5 6 7 8 9

C C T A G G C C T

C T A G G C C T

T A G G C C T

A G G C C T

G G C C T

G C C T

C C T

C T

T

Property: Every internal node corresponds to a substring of S



Trie application 2: Substring index
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To use a suffix tree to answer the query Is X a substring of S ?

• Use the characters of X to traverse the trie.

• Continue in string when nonvoid node encountered.

• Report failure if void node encountered.

• Report success when end of X reached.
A C C T A G G C C T

0 1 2 3 4 5 6 7 8 9

A C T G A C T G A C T G A C T G

0 4

1

2 3 6 5

A C T G

ACCTA✓

TGA ✗

CCT✓



Trie application 3: Elect a leader
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 Problem:  Elect a leader among a group of individuals.



Trie application 3: Elect a leader

0

0

0

0

0

1 1

1
1

1

1

1

 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.

42



Trie application 3: Elect a leader
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.



Trie application 3: Elect a leader

1 1

0
0

1

1

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.

0 1

1

1

0



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.

1

1

1



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.

0

0

1



Trie application 3: Elect a leader

1
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 Method. 

• Each person flips a 0-1 coin.

• 1 wins, 0 loses

• Winners continue to next round.

A WINNER!



Trie application 3: Elect a leader

1
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0

Procedure might fail!

0

0



Trie application 3: Elect a leader

1
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Procedure might fail!

a set of losers

 Q. What is the chance of failure? 

 A. Probability that the rightmost path in a random trie ends in a void node.

 Q. What is a random trie? 

 A. Built by inserting infinite-length random bitstrings into an initially empty trie.



Trie application 3: Elect a leader

1
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 Q. How many rounds in a distributed leader election? 

 A. Expected length of the rightmost path in a random trie.
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Analysis of trie parameters
is the basis of understanding performance in numerous large-scale applications.
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Q. Expected search cost?
A. External path length.

Q. Space requirement?
A. Number of external nodes.

Q. Rounds in leader election?
A. Length of rightmost path.

Usual model: Build trie from N infinite random bitstrings (nonvoid nodes represent tails)

( 3 + 5 + 5 + 5 + 5 + 3 + 3 + 3 + 4 + 4 + 3 + 4 + 4 ) / 13
                                                                                     ≐ 3.92

13 external nodes

Q. "Extra" space ?
A. Number of void nodes.

6 void
 nodes



Average external path length in a trie

Caution: When k = 0 and k = N, CN appears on right-hand side.

k strings,
stripped of 0 bit

N−k strings,
stripped of 1 bit

N external nodes

Recurrence. [For comparison with BST and Catalan models.]

BST

Catalan

Trie

Pr {root is of rank k}
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Probability that the root is of rank k in a random tree. 
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Random binary tree

BST built from random perm

Trie built from random bitstrings

AVL tree

0

.5

.25

.125

.103

0



Average external path length in a trie

*5 = 5+
�
�5

�

R

�
5
R

�
(*R + *5�R) MVY 5 > � ^P[O *� = *� = �Recurrence.

= aLa � a + �La/�
�a
�
La/� � a

�
+ �La/�*(a/�)

�

= a(La � �) + a(La � La/�) + �L�a/�*(a/�)

= a(La � �) + a(La � La/�) + a(La � L�a/�) + �L�a/�*(a/�)

*5 = 5![a5]*(a) = 5
�

Q��

�
� �

�
� � �

�Q
�5���

Expand.

*5 � 5
�

Q��

(� � L�5/�Q) � 5 lg5Approximate (exp-log)

Iterate. *(a) = a
�

Q��

�
La � L(����Q)a

�

*(a) = aLa � a + �La/�*(a/�)GF equation. Also available directly
through symbolic method
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EGF

*(a) =
�

5��

*5
a5

5!

See next slide



Average external path length in a trie

�

Q��

(� � L�5/�Q) =
�

��Q<�lg5�

(� � L�5/�Q) +
�

Q��lg5�

(� � L�5/�Q)

= �lg5� �
�

��Q<�lg5�

(L�5/�Q) +
�

Q��lg5�

(� � L�5/�Q)

= �lg5� �
�

Q<�lg5�

(L�5/�Q) +
�

Q��lg5�

(� � L�5/�Q) +6(L�5)

= �lg5� �
�

Q<�

(L�5/�Q+�lg 5�
) +

�

Q��

(� � L�5/�Q+�lg 5�
) +6(L�5)

Goal: isolate periodic terms

= lg5� {lg5} �
�

Q<�

L��{lg 5}�Q
+

�

Q��

(� � L��{lg 5}�Q
) +6(L�5) ✓
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Average external path length in a trie

10−6A + B + C

1.33274

0.8A

A

0.2B

B

0.7C

C

*5 = 5+
�
�5

�

R

�
5
R

�
(*R + *5�R) MVY 5 > � ^P[O *� = *� = �

*5/5 = lg5� {lg5} �
�

Q<�

L��{lg 5}�Q
+

�

Q��

(� � L��{lg 5}�Q
) +6(L�5)

Q.

A.
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Fluctuating term in trie (and other AofA) results

10−6

1.33274

62

Q. Is there a reason that such a recurrence should imply such periodic behavior?                         

A. Yes. Stay tuned for the Mellin transform and related topics in Part II.

*5 = 5+
�
�5

�

R

�
5
R

�
(*R + *5�R) MVY 5 > � ^P[O *� = *� = �

*5/5� lg5



Trie built from random bitstrings

BST built from random perm

Average external path length distribution
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Analysis of trie parameters
is the basis of understanding performance in numerous large-scale applications.
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Q. Expected search cost?
A. About N lg N − 1.333 N.

Q. Space requirement?

A. ~N/ln2 ≐ 1.44 N.

Q. Rounds in leader election?
A. [see exercise 8.57].
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Exercise 8.3

Good chance of a long run of 0s.
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Exercise 8.14

Monkey at a keyboard.
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Exercise 8.57

Leader-election success probability.
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Assignments for next lecture
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Experiment 2. Extra credit. Validate the results of the trie path 
length analysis by running experiments to build 100 random tries 
of size N for N  = 1000, 2000, 3000, ... 100,000, producing a plot 
like Figure 1.1 in the text. Build the tries by inserting N random 
strings into an initially empty trie.

1. Read pages 415-472 in text.

Experiment 1. Write a program to generate and draw 
random tries (see lecture on Trees) and use it to draw 10 
random tries with 100 nodes.

2. Run experiments to validate mathematical results.

3. Write up solutions to Exercises 8.3, 8.14, and 8.57.
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