ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

Orientation

Second half of class

- Surveys fundamental combinatorial classes.
- Considers techniques from analytic combinatorics to study them .
- Includes applications to the analysis of algorithms.

chapter	combinatorial classes	type of class	type of GF
6	Trees	unlabeled	OGFs
7	Permutations	labeled	EGFs
8	Strings and Tries	unlabeled	OGFs
9	Words and Mappings	labeled	EGFs

Note: Many more examples in book than in lectures.

ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8a.Strings.Bits

Bitstrings

Q. What is the *expected wait time for the first occurrence* of 000 in a random bitstring?

Q. What is the probability that an N-bit random bitstring *does not contain* 000?

Symbolic method for unlabelled objects (review)

Warmup: How many binary strings with *N* bits?

Class	B, the class of all binary strings	Atoms	type	class	size	GF	
Size	b , the number of bits in b		0 bit	Z_0	1	Ζ	
			1 bit	Z_1	1	z	
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$						
Const	ruction $B = SEQ(Z_0$	$+Z_{1})$		a binary s [.] of 0 b	tring is its and	a sequ 1 bits"	ence
OGF e	quation $B(z) = \frac{1}{1-z}$	2 <i>z</i>					
	$[z^N]B(z) =$	2^N \checkmark					

Symbolic method for unlabelled objects (review)

Warmup: How many binary strings with N bits (alternate proof)?

Class	B, the class of all binary strings	Atoms	type	class	size	GF	
Size	<i>b</i> , the number of bits in <i>b</i>		0 bit	Z_0	1	Ζ	
	$\mathbf{r}(\mathbf{r}) = \sum_{i=1}^{N} b = \sum_{i=1}^{N} b $		1 bit	Z_1	1	z	
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$						
Const	ruction $B = E + (Z_0 + Z_0)$	$(A_1) \times B$	"a a bit	binary s followed	string is d by a b	empty oinary	y or string"
OGF e	quation $B(z) = 1 + 2z$	B(z)					
Soluti	on $B(z) = \frac{1}{1-2}$	Z					
	$[z^N]B(z) = 2$	N 🗸					

Ex. How many *N*-bit binary strings have no two consecutive 0s?

Class
$$B_{00}$$
, the class of binary strings with no 00 OCF $B_{00}(z) = \sum_{b \in B_{00}} z^{|b|}$ Construction $B_{00} = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B_{00}$ "a binary string with no 00 is either
empty or 0 or it is 1 or 01 followed
by a binary string with no 00"OGF equation $B_{00}(z) = 1 + z + (z + z^2)B_{00}(z)$ Solution $B_{00}(z) = \frac{1 + z}{1 - z - z^2}$ Extract cofficients $[z^N]B_{00}(z) = F_N + F_{N+1} = F_{N+2}$ 1, 2, 5, 8, 13, ... \checkmark $= \frac{\phi^2}{\sqrt{5}}\phi^N \sim c_2\beta_2^N$ with $\begin{cases} \beta_2 \doteq 1.61803 \\ c_2 \doteq 1.17082 \end{cases}$

7

Binary strings without long runs of Os

Ex. How many *N*-bit binary strings have no runs of *P* consecutive 0s?

Class
$$B_P$$
, the class of binary strings with no 0^P OGF $B_P(z) = \sum_{b \in B_P} z^{|b|}$ Construction $B_P = Z_{"a string with no 0^P is a string of $0s$ of length 0^P$ "OGF equation $B_P(z) = (1 + z + \ldots + z^P)(1 + zB_P(z))$ "a string with no 0^P "Solution $B_P(z) = \frac{1 - z^P}{1 - 2z + z^{P+1}}$ $1/\beta_k$ is the smallest root ofExtract cofficients $[z^N]B_k(z) \sim c_k \beta_k^N$ where $\begin{cases} \beta_k$ is the dominant root of $1 - 2z + z^k \\ c_k = [explicit formula available] \\ See "Asymptotics" lecture$

Binary strings without long runs

Theorem. The number of binary strings of length *N* with no runs of *P* 0s is $\sim c_P \beta_P^N$ where c_P and β_P are easily-calculated constants.

```
sage: f_2 = 1 - 2x + x^3
     sage: 1.0/f2.find_root(0, .99, x)
     1.61803398874989
B<sub>2</sub>
     sage: f3 = 1 - 2*x + x^4
     sage: 1.0/f3.find_root(0, .99, x)
     1.83928675521416
β<sub>3</sub>
     sage: f4 = 1 - 2*x + x^5
     sage: 1.0/f4.find_root(0, .99, x)
     1.92756197548293
B4
     sage: f5 = 1 - 2*x + x^6
     sage: 1.0/f5.find_root(0, .99, x)
β5
     1.96594823664510
     sage: f6 = 1 - 2*x + x^7
     sage: 1.0/f6.find_root(0, .99, x)
β<sub>6</sub>
     1.98358284342432
```

Information on consecutive Os in GFs for strings

$$S_{P}(z) = \sum_{s \in S_{P}} z^{|s|} = \frac{1 - z^{P}}{1 - 2z + z^{P+1}} = \sum_{N \ge 0} \{\# \text{ of bitstrings of length } N \text{ with no } 0^{P} \} z^{N}$$

$$S_{P}(z/2) = \sum_{N \ge 0} (\{\# \text{ of bitstrings of length } N \text{ with no runs of } P \text{ 0s}\}/2^{N}) z^{N}$$

$$S_{P}(1/2) = \sum_{N \ge 0} \{\# \text{ of bitstrings of length } N \text{ with no runs of } P \text{ 0s}\}/2^{N}$$

$$= \sum_{N \ge 0} \Pr \{\text{1st } N \text{ bits of a random bitstring have no runs of } P \text{ 0s}\}$$

$$= \sum_{N \ge 0} \Pr \{\text{position of end of first } 0^{P} \text{ is } > N \} = \text{Expected position of end of first } 0^{P}$$

Theorem. Probability that an *N*-bit random bitstring has no 0^P : $[z^N]S_P(z/2) \sim c_P(\beta_P/2)^N$

Theorem. Expected wait time for the first 0^{p} in a random bitstring: $S_{P}(1/2) = 2^{P+1} - 2$

Consecutive Os in random bitstrings

Р	S _P (z)	approx. probability of no 0 ^{<i>p</i>} in N random bits			
		Ν	10	100	
1	$\frac{1-z}{1-2z+z^2}$.5 ^N	0.0010	<10-30	2
2	$\frac{1-z^2}{1-2z+z^3}$	1.1708 × .80901 ^N	0.1406	<10-9	6
3	$\frac{1-z^3}{1-2z+z^4}$	1.1375 × .91864 ^{<i>N</i>}	0.4869	0.0023	14
4	$\frac{1-z^4}{1-2z+z^5}$	1.0917 × .96328 ^N	0.7510	0.0259	30
5	$\frac{1-z^5}{1-2z+z^6}$	1.0575 × .98297 ^N	0.8906	0.1898	62
6	$\frac{1-z^6}{1-2z+z^7}$	1.0350 × .99174 ^N	0.9526	0.4516	126

Validation of mathematical results

is always worthwhile when analyzing algorithms

```
Ł
public class TestOccP
                                                                  int cnt = 0;
                                                                  for (int i = 0; i < bits.length; i++)</pre>
   public static int find(int[] bits, int k)
                                                                  {
  // See code at right.
                                                                     if (cnt == P) return i;
                                                                     if (bits[i] == 0) cnt++; else cnt = 0;
   public static void main(String[] args)
                                                                  }
      int w = Integer.parseInt(args[0]);
                                                                  return bits.length;
      int maxP = Integer.parseInt(args[1]);
                                                               }
      int[] bits = new int[w];
      int[] sum = new int[maxP+1]; N/w trials.
                                   • Read w-bits from StdIn
      int T = 0;
      int cnt = 0;
                                   • For each P, check for 0<sup>P</sup>
      while (!StdIn.isEmpty())
      {
                                  Print empirical probabilities.
         T++:
        for (int j = 0; j < w; j++)
            bits[j] = BitIO.readbit();
                                                              % java TestOccP 100 6 < data/random1M.txt
        for (int P = 1; P \le maxP; P++)
                                                                 0.0000
                                                                            .0000
            if (find(bits, P) == bits.length) sum[P]++;
      }
                                                                 0.0000
                                                                            .0000
                                                                 0.0004
                                                                            .0023
                                                                                             predicted
      for (int P = 1; P \le maxP; P++)
                                                                                             by theory
                                                                 0.0267
                                                                            .0259
          StdOut.printf("%8.4f\n", 1.0*sum[P]/T);
                                                                 0.1861
                                                                            .1898
      StdOut.println(T + "trials"):
                                                                 0.4502
                                                                            .4516
  }
}
                                                              10000 trials
```

public static int find(int[] bits, int P)

Wait time for specified patterns

9	23	10111110100	1010011001	11 000 10011	1110110110	100000111100	00110011	1011101111	101011000
4	9	110100101 00	0 111101001	1110011010	0111011010	111110000010	011011100	110100000	111001110
12	29	11101110101	1 <mark>001</mark> 110101	11001101 <mark>00</mark>	0011000111	001010111110	0011001000	0011001000	101010010
8	5	10111 <mark>000</mark> 011	0110001100	1110111001	1011011110	111110011101	L01100001	1001100101	000000110
6	13	101011 <mark>001</mark> 11	01 000 11011	0111011001	0010110100	101001101111	L10011000	0001111101	000001111
4	1	1 000 0010011	0000011000	1100010000	1111001110	011110000011	L00111111	0011011000	100100111
2	24	10001010101	1100011101	011 000 0011	0000011101	010100010110	00100110	1111110011	110110010
0	18	00111011001	0111001 <mark>000</mark>	0110000100	1111010010	011001100001	L100111010	0011010000	101000111
0	42	00111111100	1101101110	1101110101	0011011011	1 000 1111111	L010111010	0011000000	100101110
6	5	10101 <mark>0001</mark> 11	1000010100	0001100100	0001101010	010100011001	L100101010	0101110110	111111110
6	2	11 000 000101	1110110110	0010101101	0110010010	000011101110	001000000	1101010000	000101000
30	70	11101111011	0111110111	111111101 <mark>0</mark>	0111010010	111111011101	L0011101 <mark>0</mark>	011000100	100010010
0	25	<mark>001</mark> 11111100	1110101101	1111 <mark>000</mark> 010	0010001110	000111010111	L10010101	1111001110	101011111
4	0	000 00010001	1110011101	1010101110	0110000011	110010010010)101001100	0110011010	011011110
6	24	1011110 <mark>010</mark> 1	0001001101	111 <mark>000</mark> 1100	1000111001	000010100110	010111011	1111010110	010011100
4	7	0101001 000 1	0111101100	0011011010	1011010101	111011001101	L101101000	0100110001	111100111
7	23	01110110010	0110011101	11 <mark>000</mark> 10101	0001101101	001111111001	L101010111	1010001100	110100001
0	3	00100011011	0100011000	1111111001	1100110011	110010110001	L100110011	1010001110	111011101

Expected wait time for the first occurrence of 000: 17.9

Expected wait time for the first occurrence of 001: 6.0 Are these bitstrings random??

Autocorrelation

The probability that an *N*-bit random bitstring does not contain 0000 is $\sim 1.0917 \times .96328^{N}$

0001 occurs much

earlier than 0000

The expected wait time for the first occurrence of 0000 in a random bitstring is 30.

Q. Do the same results hold for 0001?

Observation. Consider first occurrence of 000.

- •0000 and 0001 equally likely, BUT
- •mismatch for 0000 means 0001, so need to wait four more bits
- •mismatch for 0001 means 0000, so *next* bit could give a match.

Q. What is the probability that an N-bit random bitstring does not contain 0001?

Q. What is the expected wait time for the first occurrence of 0001 in a random bitstring?

Constructions for strings without specified patterns

Cast of characters:

- *p* a pattern
- S_p binary strings that do not contain p
- T_p binary strings that end in p and have no other occurrence of p

p 101001010

Sp 101111101011001100110000011111

First construction

- S_p and T_p are disjoint
- the empty string is in S_p
- adding a bit to a string in S_p gives a string in S_p or T_p

$$S_p + T_p = E + S_p \times \{Z_0 + Z_1\}$$

Constructions for bitstrings without specified patterns

Every pattern has an autocorrelation polynomial

- slide the pattern to the left over itself.
- for each match of *i* trailing bits with the leading bits include a term $z^{|p|-i}$

Constructions for bitstrings without specified patterns

Second construction

- for each 1 bit in the autocorrelation of any string in T_p add a "tail"
- result is a string in S_p followed by the pattern

p 101001010

$$S_p \times \{p\} = T_p \times \sum_{c_i \neq 0} \{t_i\}$$

17

Bitstrings without specified patterns

How many *N*-bit strings do not contain a specified pattern *p*?

Classes
$$S_p$$
 — the class of binary strings with no p $OGFs$ $S_p(z) = \sum_{s \in S_p} z^{|s|}$ T_p — the class of binary strings that end in p $T_p(z) = \sum_{s \in T_p} z^{|s|}$ $T_p(z) = \sum_{s \in T_p} z^{|s|}$ Constructions $S_p + T_p = E + S_p \times \{Z_0 + Z_1\}$ $S_p \times \{p\} = T_p \times \sum_{c_i \neq 0} \{t_i\}$ OGF equations $S_p(z) + T_p(z) = 1 + 2zS_p(z)$ $S_p(z)z^p = T_p(z)c_p(z)$ Solution $S_p(z) = \frac{c_p(z)}{z^p + (1 - 2z)c_p(z)}$ Extract cofficients $[z^N]S_p(z) \sim c_p \beta_p^N$ where $\begin{cases} \beta_p$ is the dominant root of $z^P + (1 - 2z)c_p(z)$ Extract cofficients $[z^N]S_p(z) \sim c_p \beta_p^N$ where $\begin{cases} \beta_p$ is the dominant root of $z^P + (1 - 2z)c_p(z)$

18

Autocorrelation for 4-bit patterns

p	p auto- correlation OGF		Probability t in N	wait time		
			Ν	10	100	
0000 1111	1111	$\frac{1-z^4}{1-2z+z^5}$. 96328 ^{<i>N</i>}	0.7510	0.0259	30
0001 0011 0111 1000 1100 1110	1000	$\frac{1}{1-2z+z^4}$.91964 ^{<i>N</i>}	0.4327	0.0002	16
0010 0100 0110 1001 1011 1101	1001	$\frac{1+z^3}{1-2z+z^3-z^4}$.93338 <i>N</i>	0.5019	0.0010	18
0101 1010	1010	$\frac{1+z^2}{1-2z+z^2-2z^3+z^4}$.94165 [∧]	0.5481	0.0024	20
Example. In 100 rando 0000 is ~10 times n ~100 times n	m bits, nore likely to b nore likely to b	be absent than 0101 c be absent than 0001.	onstants omit (close to 1)	off by but in ted	/ v < 10% dicative	

ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8b.Strings.Sets

Formal languages and the symbolic method

Definition. A formal language is a set of strings.

Q. How many strings of length N in a given language?

A. Use an OGF to enumerate them.

$$S(z) = \sum_{s \in \mathcal{S}} z^{|s|}$$

Remark. The symbolic method provides a systematic approach to this problem.

Issue. Ambiguity.

Regular expressions

Theorem. Let A and B be *unambiguous* REs with OGFs A(z) and B(z). If A + B, AB, and A* are also unambiguous, then

OGF for an unambiguous RE is *rational* — can be written as the ratio of two polynomials.

Proof.

Same as for symbolic method—different notation.

Corollary. OGFs that enumerate *regular languages* are rational.

Proof.

- 1. There exists an FSA for the language.
- 2. *Kleene's theorem* gives an unambiguous RE for the language defined by any FSA.

Regular expressions

Example 1. Binary strings with no 000

RE.	$(1 + 01 + 001 + 001)^*(\epsilon + 0 + 00 + 00)$
OGF.	$S_4(z) = \frac{1 + z + z^2 + z^3}{1 - (z + z^2 + z^3 + z^4)}$
	$\frac{1-z^4}{1-z}$
	$= \frac{1-z}{1-z^{4}}$ $1-z\frac{1-z^{4}}{1-z}$
	$=\frac{1-z^4}{1-2z+z^5} \checkmark$
Expansion.	$[z^N]S_4(z) \sim c_4 \beta_4^N$ with $\begin{cases} \beta_4 \doteq 1.92756\\ c_4 \doteq 1.09166 \end{cases}$

Example 2. Binary strings that represent multiples of 3

RE.

$$(1(01^*0)^*10^*)^*$$
 11

 OGF.
 $D_3(z) = \frac{1}{1 - \frac{z^2}{1 - z^2}} \left(\frac{1}{1 - z}\right) = \frac{1}{1 - \frac{z^2}{1 - z - z^2}}$
 1001

 $1 - \frac{z^2}{1 - z} \left(\frac{1}{1 - z}\right) = \frac{1}{1 - \frac{z^2}{1 - z - z^2}}$
 1100

 $= 1 - \frac{z^2}{(1 - 2z)(1 + z)}$
 10010

 Expansion.
 $[z^N]D_3(z) \sim \frac{2^{N-1}}{3}$
 \checkmark

Context-free languages

Theorem. Let <A> and be nonterminals in an *unambiguous* CFG with OGFs A(z) and B(z). If <A> | and <A> are also unambiguous, then A(z) + B(z) enumerates <A> | A(z)B(z) enumerates <A>

Proof.

Same as for symbolic method—different notation.

Corollary. OGFs that enumerate unambiguous CF languages are *algebraic*.

Proof.

"Gröbner basis" elimination—see text.

An *algebraic function* is a function that satisfies a polynomial equation whose coefficients are polynomials with rational coefficients

Context-free languages

The unlabelled constructions we have considered *are* CFGs, using different notation.

class	construction	CFG	OGF (algebraic)
Binary Trees	$T = E + T \times Z \times T$	<t> := <e> <t> := <t><z><t></t></z></t></t></e></t>	$T(z) = 1 + zT(z)^2$
Bitstrings	$B = E + (Z_0 + Z_1) \times B$:= <e> <math><y> := <z_0> <z_1></z_1></z_0></y></math> <math> := <y> \times </y></math></e>	B(z) = 1 + 2zB(z)
Bitstrings with no 00	$B_{00} = (E + Z_0) \\ \times (E + Z_1 \times B_{00})$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$B_{00}(z) = 1 + z$ + $(z + z^2)B_{00}(z)$

Note 1. Not all CFGs correspond to combinatorial classes (ambiguity).

Note 2. Not all constructions are CFGs (many other operations have been defined).

Walks

Definition. A walk is a sequence of + and - characters.

Sample applications:

- Parenthesis systems
- Gambler's ruin problems

• Inversions in 2-ordered permutations (see text)

Q. How many different walks of length *N*?

Q. How many different walks of length N where every prefix has more + than -?

()((()))())())

+-++---+--+--

Unambiguous decomposition of walks

28

Context-free languages

Example. Walks of length 2N that start at and return to 0

CFL.

$$\begin{cases}
 ~~:= <-> ~~| <+> ~~| < z \\ := <-> | <+> \\ := <+> | <->
\end{cases}~~~~~~$$
OGFs.

$$S(z) = zU(z)S(z) + zD(z)S(z) + 1$$

$$U(z) = z + zU^{2}(z)$$

$$D(z) = z + zD^{2}(z)$$
Solve simultaneous equations.

$$U(z) = D(z) = \frac{1}{2z} \left(1 - \sqrt{1 - 4z^{2}}\right)$$

$$S(z) = \frac{1}{1 - 2zU(z)} = \frac{1}{\sqrt{1 - 4z^{2}}}$$
Expand.

$$[z^{2N}]S(z) = {2N \choose N} \longleftarrow$$
Elementary example, but extends to similar, more difficult problems

29

ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

&c.Strings.Tries

Tries

Definition. A trie is a binary tree with the following properties:

- •External nodes may be void (=)
- •Siblings of void nodes are *not* void (• or □).

Ex. Give a recursive definition.

Tries and sets of bitstrings

Each trie corresponds to a set of bitstrings.

- Each nonvoid external node represents one bitstring.
- Path from the root to a node defines the bitstring

Note: Works only for *prefix-free* sets of bitstrings (or use void/nonvoid *internal* nodes).

no member is a prefix of another

Tries and sets of bitstrings (fixed length)

If all the bitstrings in the set are the same length, it is prefix-free.

Trie applications

Searching and sorting

- MSD radix sort
- Symbol tables with string keys
- Suffix arrays

Data compression

- Huffman and prefix-free codes
- •LZW compression

Decision making

- Collision resolution
- Leader election

Application areas: Network systems Bioinformatics Internet search Commercial data processing

Trie application 1: Symbol tables

Search

- If at nonvoid external node and no bits left in bitstring, report success.
- If at void external node, report failure.
- If leading bit is 0, search in the left subtrie (using remainder of string).
- If leading bit is 1, search in the right subtrie (using remainder of string).

Q. Expected search time ?

Trie application 1: Symbol tables

Insert

- Search to void external node (prefix-free violation if nonvoid external node hit).
- Add internal nodes (each with one void external child) for each remaining bit.

Q. How many void nodes ?

Trie application 2: Substring search index

Problem: Build an index that supports fast *substring search* in a given string *S*.

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$ Ex. S \longrightarrow ACCTAGGCCT

Q. Is ACCTA in S?

- A. Yes, starting at 0.
- Q. Is CCT in S?
- A. Yes, in multiple places.
- Q. Is TGA in S?
- A. No.

Application 1: Search in genomic data.

Application 2: Internet search.

Solution: Use a *suffix multiway trie*.

To build the *suffix multiway trie* associated with a string S a prefix-free set • Insert the substrings starting at each position into an initially empty trie. • Associate a string index with each nonvoid external node. 0123456789 ACCTAGGCCT CCTAGGCCT Property: *Every* internal node corresponds to a substring of *S* CTAGGCCT TAGGCCT AGGCCT А G С Т GGCCT GCCT ССТ С С G A G A / G A Α СТ Т

Trie application 2: Substring search index

Trie application 2: Substring index

To use a suffix tree to answer the query *Is X a substring of S*?

- Use the characters of X to traverse the trie.
- Continue in string when nonvoid node encountered.
- Report failure if void node encountered.
- Report success when end of X reached.

0 1 2 3 4 5 6 7 8 9 A C C T A G G C C T

Problem: Elect a *leader* among a group of individuals.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Q. How many rounds in a distributed leader election?
- A. Expected length of the rightmost path in a random trie.

ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8d.Strings.TrieParms

Analysis of trie parameters

is the basis of understanding performance in numerous large-scale applications.

- Q. Space requirement?
- A. Number of external nodes.
- Q. "Extra" space ?A. Number of void nodes.
- Q. Expected search cost?A. External path length.
- Q. Rounds in leader election?A. Length of rightmost path.

Usual model: Build trie from *N infinite* random bitstrings (nonvoid nodes represent tails)

Recurrence. [For comparison with BST and Catalan models.]

$$C_N = N + \frac{1}{2^N} \sum_{k} \binom{N}{k} (C_k + C_{N-k}) \text{ for } N > 1 \text{ with } C_0 = C_1 = 0$$
Caution: When $k = 0$ and $k = N$, C_N appears on right-hand side.

57

Probability that the root is of rank k in a random tree.

Random binary tree

BST built from random perm

AVL tree

Recurrence.
$$C_N = N + \frac{1}{2^N} \sum_k {N \choose k} (C_k + C_{N-k}) \text{ for } N > 1 \text{ with } C_0 = C_1 = 0$$
ECFGF equation. $C(z) = ze^z - z + 2e^{z/2}C(z/2) \leftarrow \text{Also available directly} \text{through symbolic method}$ $C(z) = \sum_{N \ge 0} C_N \frac{z^N}{N!}$ $= ze^z - z + 2e^{z/2} \left(\frac{z}{2}e^{z/2} - \frac{z}{2} + 2e^{z/4}C(z/4)\right)$ $= z(e^z - 1) + z(e^z - e^{z/2}) + 4e^{3z/4}C(z/4)$ $= z(e^z - 1) + z(e^z - e^{z/2}) + 2(e^z - e^{3z/4}) + 8e^{7z/8}C(z/8)$ Iterate. $C(z) = z \sum_{j \ge 0} \left(e^z - e^{(1-2^{-j})z}\right)$ Expand. $C_N = N![z^N]C(z) = N \sum_{j \ge 0} \left(1 - \left(1 - \frac{1}{2^j}\right)^{N-1}\right)$ Approximate (exp-log) $C_N \sim N \sum_{j \ge 0} (1 - e^{-N/2^j}) \sim N \lg N \leftarrow \text{See next slide}$

Goal: isolate periodic terms

$$\begin{split} \sum_{j\geq 0} (1 - e^{-N/2^j}) &= \sum_{0\leq j<\lfloor \lg N \rfloor} (1 - e^{-N/2^j}) + \sum_{j\geq \lfloor \lg N \rfloor} (1 - e^{-N/2^j}) \\ &= \lfloor \lg N \rfloor - \sum_{0\leq j<\lfloor \lg N \rfloor} (e^{-N/2^j}) + \sum_{j\geq \lfloor \lg N \rfloor} (1 - e^{-N/2^j}) \\ &= \lfloor \lg N \rfloor - \sum_{j<\lfloor \lg N \rfloor} (e^{-N/2^j}) + \sum_{j\geq \lfloor \lg N \rfloor} (1 - e^{-N/2^j}) + O(e^{-N}) \\ &= \lfloor \lg N \rfloor - \sum_{j<0} (e^{-N/2^{j+\lfloor \lg N \rfloor}}) + \sum_{j\geq 0} (1 - e^{-N/2^{j+\lfloor \lg N \rfloor}}) + O(e^{-N}) \\ &= \lg N - \{ \lg N \} - \sum_{j<0} e^{-2^{\{ \lg N \} - j}} + \sum_{j\geq 0} (1 - e^{-2^{\{ \lg N \} - j}}) + O(e^{-N}) \end{split}$$

60

61

Fluctuating term in trie (and other AofA) results

$$C_N = N + \frac{1}{2^N} \sum_k {\binom{N}{k}} (C_k + C_{N-k}) \text{ for } N > 1 \text{ with } C_0 = C_1 = 0$$

Q. Is there a reason that such a recurrence should imply such periodic behavior?

A. Yes. Stay tuned for the Mellin transform and related topics in Part II.

Average external path length distribution

Trie built from random bitstrings

BST built from random perm

Analysis of trie parameters

is the basis of understanding performance in numerous large-scale applications.

Q. Space requirement?

A. ~ $N/\ln 2 \doteq 1.44 N$.

Q. Expected search cost? A. About $N \lg N - 1.333 N$.

Q. Rounds in leader election?A. [see exercise 8.57].

ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters
- Exercises

8d.Strings.Exs

Exercise 8.3

Good chance of a long run of 0s.

Exercise 8.3 How long a string of random bits should be taken to be 50% sure that there are at least 32 consecutive 0s?

Exercise 8.14

Monkey at a keyboard.

Exercise 8.14 Suppose that a monkey types randomly at a 32-key keyboard. What is the expected number of characters typed before the monkey hits upon the phrase THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG?

Exercise 8.57

Leader-election success probability.

Exercise 8.57 Solve the recurrence for p_N given in the proof of Theorem 8.9, to within the oscillating term.

$$p_N = \frac{1}{2^N} \sum_k {\binom{N}{k}} p_k$$
 for $N > 1$ with $p_0 = 0$ and $p_1 = 1$

Assignments for next lecture

1. Read pages 415-472 in text.

2. Run experiments to validate mathematical results.

Experiment 1. Write a program to generate and draw random tries (see lecture on Trees) and use it to draw 10 random tries with 100 nodes.

Experiment 2. Extra credit. Validate the results of the trie path length analysis by running experiments to build 100 random tries of size N for N = 1000, 2000, 3000, ... 100,000, producing a plot like Figure 1.1 in the text. Build the tries by inserting N random strings into an initially empty trie.

3. Write up solutions to Exercises 8.3, 8.14, and 8.57.

ANALYTIC COMBINATORICS

PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries