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Orientation

Second half of class
 Surveys fundamental combinatorial classes.
» Considers techniques from analytic combinatorics to study them .
e Includes applications to the analysis of algorithms.

chapter combinatorial classes type of class type of GF
6 Trees unlabeled OGFs
7 Permutations labeled EGFs
8 Strings and Tries unlabeled OGFs
9 Words and Mappings labeled EGFs

Note: Many more examples in book than in lectures.
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Basics

Definition. A permutation is an ordering or the numbers 1 through N.

Ex. A group of N students who live in single rooms go to a party that leads to a state of inebriation.
When returning, they each end up in a random room.

student 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16

room @@@@@@@@@@@@




Review: permutations

Def. A permutation is a sequence of labelled atoms.

P

00
@O

P,=2

000
Q00
00,0
000
Q00
©0/0

P; =6

OGO OO®E
Q00040101010
HOO® OOL®E
OO OO
LOO® VOO
OOO® QOO
HOO® OO
OO WO
OOO® OGO
OOOLG OWAOQ
HOOLG WO
OO WOOO

Py =24

counting sequence

Py = NI




Inverse

Alternate def. A permutation is a mapping of the numbers 1 through N to itself.

student 1 2 10 11 12 13 14 15 16

rm1@@@®@@@@@@@0@@@@

Def. The inverse of a permutation is the inverse of that mapping.

student 7 13 15 10 12 11 16 14

rm1@@@@@@@@@®@@@@@@

rm1@@@@@@@@@®@@@@@@

student 7 13 11 16



Computing the inverse of a permutation

permutation

8 1 3 7 6 2 9

public static int[] inverse(int[] a) S
{
int N = a.length;
int[] b = new int[N]; 2
for (int i = 0; i < N; i++) 5 3
b[a[i]-1] = 1+1;
return b; 2 3 4
} 2 3 5 4
2 6 3 5 4
Java arrays are 0-based
2 6 3 5 4
2 6 3 8 5 4



Application: Substitution cipher

Algorithm (traditional)
« Generate random permutation of A-Z (stay tuned).
» Apply as a mapping to encrypt.
e Use inverse to decrypt.

Encryption ABCDEFGHTIIKTLMN

O PQRSTUVWIXY
random permutation W V L Q I X J AB G- UNFKRYCDPZEOMH

plaintext A T T A CK - AT - DA WN

ciphertext W P P WL - S WPSQWOF

Decryption

(o
<

I J] K LMNGOFP
inverse H EGCGOCXMWT

ciphertext W P P W L - S WP SAQ
plaintext A T T A CK - AT -0D

Caveat. Not useful in modern applications because of susceptibility to character frequency analysis.

T



Lattice representation of a permutation

marked
column

1 2 3 45 6 7 8 9101112131415161

1 7
2 H 13
3 8
4 - S
5 [ ] 5
6 10
7 .- 9
8 | | 12 inverse
' 1
10 4
11 3
12 2
13 ™ 11
14 16
15 H 6
marked 16 . 14
Cow 9 121110 5151 3 7 6 13 8 2 16 4 14

permutation

Implication. Representation of inverse is transpose of representation of permutation.



Review: A combinatorial bijection

Alternate def. A permutation is a set of cycles.

Standard representation

10 12 13 14 15 16

@@@\G@@@@

Set of cycles representation

£ e g

10



Review: The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction notation semantics EGF
disjoint union A+ B disjoint copies of objects from A and B A(z) + B(z)
ordered pairs of copies of objects,
labelled product Ax B one from A and one from. B A(z)B(z)
SEQk(A) k- sequences of objects from A A(Z)k
sequence 1
SEQ(A) sequences of objects from A
1—A(2)
SETk(A) k-sets of objects from A A(2)* k!
set
SET(A) sets of objects from A eA(Z)
CYCk(A) k-cycles of objects from A A(2)* 1k
cycle 1
CYC(A) cycles of objects from A In



Review: symbolic method to count permutations

How many permutations of length N ?

Class P, the class of all permutations

Size  |p|, the length of p

ocF P(z)=)_

pEP

Z|P|
P!
Construction

OGF equation

Solution

Atom

N
:Z’DN%

N>0

P=E+Z%xP

type

labelled atom

class size GF

Z 1 z

“a permutation is empty or an
atom and a permutation”



Application: Sorting algorithms

[hundreds of algorithms since 1950] l
U owblic class Merge I input (maybe not in random order)
{
public class Quick T S R P O N M L I
{
private static int partition(Comparable[] a, int lo, int hi)
{
int i = To, j = hi+l; . .
while Ceroey random permutation of the input
{
while (less(a[++i], a[lo])) if (i == hi) break;
while (less(a[lo]l, a[--j1)) if (j == 10) break; N L T R M O I P S
if (i >= j) break;
exch(a, 1, j);
ixch(a, To, i); sorted output
return j;
¥ I L M N O P R ST

private static void sort(Comparable[] a, int 1o, int hi)

if (hi <= 10) return;

1 int j = partition(a, To, hi);
E— sort(a, Tlo, j-1);
} sort(a, j+1, hi);
— }
}

Q. Model for input?

A. Random permutation.

Q. Realistic?

Q. Absolutely, if we put entries in random order before the sort!

Algorithms

Chapter 2



Application: Randomly permuting an array/generate a random permutation

input (maybe not in random order)

T S R P ONWMILI

Algorithm (Knuth)
« Move from left to right.
« Exch each entry with a random entry to its right. NS RPOTMILTI

for (int i = 0; i < N; i++)
{ T P O R M S T

int r i + StdRandom.uniform(N-i);
int t = a[r]; a[r] = a[i]; al[i] = t;

! M P O S I
_ _ 0 P S I
All permutations are equally likely:
 1st entry equally likely to be any of the N entries. I 5P
« 2nd equally likely to be any of the N—1 remaining entries. P S

 3rd equally likely to be any of the N-2 remaining entries.
random permutation of the input

N L TR MOTIT P S

use 123456789 as input to get a random permutation——— 6 8 1 3 7 5 9 4 2
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Review: Permutations and derangements

How many sets of cycles of length N ?

Construction p* — SET(CYC(Z)) “A permutation is a set of cycles"
1 1
EGF equation pP* — 1 —
(2) exp(n1_z) .
Counting sequence Py, = N![ZV]P*(2) = N!

How many derangements of length N ?

: “Derangements are permutations
Construction D= SET(CYC>1 (Z)) with no singleton cycles"
EGF equation D(z) = o? /247 347" 4+ _ exp(ln 1 1 _ Z) — 16_

— 7 — 7
D DL
Expansion  [2"]D(z) = V/;/ = D ( kl) e

0<k<N



Review: generalized derangements

How many permutations of length N have no cycles of length < M?

Construction Dy = SET(CYCsp(2))
M M2 1
OGF equation Du(z) = et iz T = exp(In -— 7
22 Z3 ZM
e ‘T 3 M
B 11—z
N!
Asymptotics (ZNDp(z) ~ ——

—z—7/2—... =2 /M)



Involutions

are permutations composed of cycles of length 1 or 2.

006 0000 @
B pae
] e o
I =®2 @ @@
@@@
@@@

I

I4=10



Review: Inverse

Alternate def. A permutation is a mapping of the numbers 1 through N to itself.

index 1 10 11 12 13 14 15 16

permutation @@@@@@@@@@@G@@@@

Def. The inverse of a permutation is the inverse of that mapping.

15 10 12 1 2 11 16 6 14

@@@@@@@G@@@@@@@@
index @@@@@@@G@@@@@@@@

inverse 11 16

Q. What is the inverse of an involution?



Inverse of an involution

An involution is a mapping of the numbers 1 through N to itself with all 1- or 2-cycles

index 1 10 11 12 13 14 15 16

mmmn@@@@@@@@@ﬁ@@aﬁ@g

Def. The inverse of an involution is the inverse of that mapping.

12 11 4 3 16

@@@@@@@G@@@@@@@@
@@@@@@@G@@@@@@@@

inverse 12 11 4

Q. What is the inverse of an involution?  A. ITSELF!

20



Lattice representation of an involution

marked
column

1 2 3 45 6 7 8 9 10111213 1415 16 l

1 [ ] 9
2 12
3 11
4 4
5 5
6 S
7 7
8 13
' 1
10 10
11 3
12 i 2
13 | ] 8
14 16
15 6
16 H 14
m?g\'jved 9 1211 4 5 15 7 13 1 10 3 2 8 16 6 14

involution

Representation of involution is symmetric about the main diagonal.

inverse

21



Application: Reciprocal cipher

An involution is a permutation that is its own inverse.

Implication: Can encrypt and decrypt with the same machine.

ABCDEFGHTIIJKLMNOTPNAQ
involution D K R A Z F U JNJBLXTIOS SV
plaintext A T T A C K - A - D A N

Encryption )
ypP ciphertext D K R A Z FU JNJBLXTI

B L XTI

(|
=
(S|

ciphertext D K R A Z F U

Decryption _
plaintext A T T A C K - AT -

Caveat. Still susceptible to character frequency analysis but can be useful as a component.

22



Application: How many different Enigma settings?

There are several variables for the Enigma machine:

1. Rotors
o you choose 3 rotors from 5
o if you label the 5 rotors A, B, C, D, E - how many ways can you choose 3 different ones?

2. Rotor starting position
o each rotor has 26 starting positions
o how many combinations does this give with 3 rotors?

3. Kickover point
o the rotors have the letters from A to Z on them
when the first rotor reaches a particular letter, it 'kicks over' to the second rotor
2 rotors therefore kickover to another, and their kickover points can be set independently
how many additional choices does this give you?

¢ o o

4. plugboard
o six sets of two letters can be transposed using the plugboard
o how many different ways can you pair six pairs of letters from the alphabet?
o there is a huge number, so it would probably be a mistake to try to write them all down!
o try finding out for small numbers, working systematically, then extend your results to larger numbers

When you've calculated all these possibilities, multiply them all together to find the total number of keys for the
Enigma machine. The answer should be:

107 458 687 327 250 619 360 000



Warmup

How many perms are comprised entirely of 2-cycles?

SiS

Rs=3

Construction

OGF equation

Coefficients

Example: ROT-13 (world's weakest cryptosystem)

ABCDEFGHTIIJIKLMNOPQRSTUVWXYZ

NOPQRSTUVWXYZABCDEFGHTIIJKLWM

ATTACK

Encryption

NGGNPX

NGGNPX

Decryption

ATTATCK

R = SET(CYC,(Z)

R(z) = e” /2

Ry = NI[zN)e? /2

N!

N (NJ2)

V2

N
4e

)/\//2

Stirling's approximation

NI ~ (N/e)Nv2aN

24



Involutions

How many involutions of size N ?

S O G 00

Construction | — 5ET(CYC1 (Z)) % 5ET(CYC2 (Z)) “Involutions are permutations with

all cycles of length 1 or 2"

2
OGF equation I(z) = % +z7/2
2 N!
Coefficients In = N![ZN]eZ+Z /2 = Z
K12K(N — 2k)!
0<2k<N ( )
/ Laplace method | e
Asymptotics N 1 (ﬁ) N/Ze\/ﬁ
Analytic
2\/6 e T~ Complex asymptotics Combto

(stay tuned for Part 2)

25



Generalized involutions

How many permutations of length N have no cycles of length > M ?

Construction Iy = SET(CYC1(Z)) % SET(CYCo(Z)) % . . . x SET(CYCri(2))

2 M
OGF equation IM(Z):eZ+Z/2+"'+Z /M

1 el+r/2+.4+M/M
Coefficient asymptotics YN N
V21 r

lyt

T~ Complex asymptotics [
(stay tuned for Part 2)

26



In-class exercise

Find

4

10]ez+z2/2 +22/34+ 7' /44+2°/5

In
— [ZTO]e
= 2%
— [210]1 1_

1

Z

6 7 8 9 10
a7z /6e—z /7e—z /Se—z /9e—z /10 o

1
——2°/6-2//7-2/8-2°/9—2"°/10— ...

27



100 prisoners

Problem. 100 prisoners, each uniquely identified by a numbered ID card (1 to 100), have been
sentenced to death, but are given a last chance.

e The ID cards are collected and put in the drawers of a cabinet with 100 numbered drawers
(1 to 100) in random order, one card per drawer

* One at a time, the prisoners are allowed to enter the room containing the cabinet and open,
then close again, at most half the drawers.

o If all prisoners find their own number, they will all be spared.
« If one prisoner fails, they will all be executed.

Prisoner A, a mathematician, bemoans their fate, claiming
the probability of success is on the order of 2-100 = 8-10-31,

, Prisoner B, who knows analytic combinatorics, claims to know
~ astrategy that gives them better than 30% chance of success.

What is Prisoner B’s strategy?
28



100 prisoners solution

Problem. 100 prisoners, each uniquely identified by a numbered ID card
(1 to 100), have been sentenced to death, but are given a last chance.

* The ID cards are collected and put in the drawers of a cabinet with 100
numbered drawers (1 to 100) in random order, one card per drawer.

* One at a time, the prisoners are allowed to enter the room containing
the cabinet and open, then close again, at most half the drawers.

« If all prisoners find their own number, they will all be spared.

* If one prisoner fails, they will all be executed.

Prisoner B’s strategy: Each prisoner "follows the cycle"
* Opens the drawer corresponding to his ID.
*Uses the number in that drawer to decide which drawer to open next.

 Continues until finding the drawer containing his ID.

Q. When does Prisoner's B strategy succeed?

A. When the random permutation has no cycles of length greater than 50.

7z Z Z
"exp (= 4+ +...4 =) =1 — (Hi0 — Hso) = 0.31

Probability of success: [z 1 ' 2 50

29
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General approach for analyzing parameters

Review: Cumulated cost approach for parameters

How many leaves in a random binary tree?

 Define GF for counting sequence and CGF.

>

— (GF. Clz) =Y leaves(t)z"

e Identify construction to give CGF equation. Pecmpsse o et > e 2 3 flmslt) lemm(ig) R

=2z+22C(2)T(z)

« Solve to get explicit formula for CGFE.

Compute number of trees Ty T(z) = zT(2)* -z

 Extract coefficients from GF to get counting seq.

Compute cumula

 Extract coefficients from CGF to get cumulated cost. T Vi =)
.. /T (Gomy) _(N+1) NN
* Divide to compute expected value Coiuse et/ = s = G0
Small trick for permutations:
P ZN
« Use exponential CGF. B(z) = cost(p)z— — Bn—
- 2P = 2PN
 Treat as OGF to extract expected value directly. p =
i ?
Why does it work: cumulated cost — NI[zN]B(2) _ MB() = Bn
e N!is the normalizing factor for ECGF. counting sequence —— N/! N!

« Nlis also the counting sequence.

31



Application: Selection sort

public static void sort(Comparable[] a)

{
int N = a.length;
for (int i = 0; i < N; i++)

{
int min = i;
for (int j = i+1l; Jj < N; j++)
if (less(al[jl, a[min])) min = j;
exch(a, i, min);
}

Q. How many times is min updated in the first pass (assuming keys distinct)?

A. The number of left-right minima in the permutation.

S ORTTINGEIXA AMTPTLE
minlI I [
‘ (Tst r[Ij1pr<]:|ate) min .

(2nd Upda(3 dm-ln m.inl |

r .
— (4th upda min
— (5th update)

Iy
ailulty Wi
Algorithms

Section 2.1

Q. How many left-right minima in a random permutation?

Caveat. Cost for whole sort is complicated, but not significant relative to the number of compares.

32



Left-right minima

Def. A left-right minimum (Irm) in a permutation is a smaller than any item to its left.

Q. How many Irm in a random permutation of size N?

P =1
B =1
Bi/Py =1

O

@O

P> =2
Bo=1+2=3
B2/P>=3/2=1.5

OOG 1
DOO 2
OO 2
OO 1
DO 2
OIOIO

P;=6

B3=21+32+1:-3=11
B3/P3=11/6 = 1.833

]
2
2
2
1
2
3
3
1
2
2
3

OOO® OLOWE
QOO® OOOWG
OOLOW OOLOWE
OO WO
LOO® OLOOWE
QOOLW® OOWO
OO OOWO
DOOG WO
OO OO
OOOLG OO
HOLEO WO
GDOLEO WOOW

Py =24

Bs=61+112+6-3+1:4=50
B4/Ps =50/24 = 2.083

A W NN = W W N = N DN DN =

33



Construction for left-right minima

Create |p|+1 perms from a perm p by star product construction.

!
HOOOOO®

01010100100
0101010101010
OEOOO® *D = OOOEDEE
[ 0101010101016
010101010106
0101010/01010

Original perm has Irm(p) left-right minima.
Q. How many left-right minima in the set of constructed perms?
A. (pl+ 1) Irm(p) +1

lp| + 1 copies of the only the one ending
original perm in 1 adds a Irm

34



Average number of left-right minima in a random permutation

CGF.

Apply construction.

Simplify.

Substitute.

Solve.

Expand.

Ja N
Z Z
B(z) =) lrm(P)w =2_Bv
peEP N>0
S ((Ipl + lrm(p) + 1) 2
= pl+ Dlrm(p) + 1) ———;
[p[+1 lp[+1
Z Z
= >+ S A
| |
e (Pt <= (pl+1)
Zk—H 5 | 1
pr— B p—
z(z)+z(k+1> 7B(z) +1n —
k>0
1 1
B(z) = In < OGF for the Harmonic numbers
1—-z 11—z
cumulated cost
Hy =1
B PN
2MB(2) = T
) ~ average # Irm in a H3=1+§+§ = 1.833 v

random permutation

35



Cycles

Q. How many cycles in a random permutation of size N?

OO 2
® 1 @ ]
B =1
Bi/P1 =1

Bb=1+2=3

B2/P>=3/2=1.5

SelSle

B3=21+32+1:-3=11
B3/P3=11/6 = 1.833

|
g B8
3@@ @ @
3@@@®@
3@@@@ |
3@@@@@‘
» 0o 04 043 b

B4=6-1+11-2+6-3+1:-4=50
B4/Ps =50/24 = 2.083

f—

J—

1

36



Construction for cycles

Create |p|+1 perms from a perm p by inserting |p|+1 into
every position in every cycle (including the null cycle)

430 ©
D00 o’

Original perm has cycles(p) cycles. év oo

Q. How many cycles in the set of constructed perms? \@/ (®
A. (lp| + 1) cycles(p) +1 «——same as for Irm ())

A {208

|p| + 1 copies of the from the
original perm null cycle

5

rON
o¥c
oo @ Qo4

37



Average number of cycles in a random permutation (same derivation as for Irm)

CGF.

Decompose.

Simplify.

Substitute.

Solve.

Expand.

pald N
B(z) = 3 cycles(p) v
I N!
peP N>0
S ((Ipl+ eyeles(p) + 1) 1
= p|+ 1)cycles(p) + 1) ————
2 CERL
Zlpl+ Zlp[+1
= Z cycles(p) T+ Z '
2 CINPACED
Zk+1 1
ZB(Z)+k§>:0(+ ] zB(z) +In ——
1 1
B(z) = In < OGF for the Harmonic numbers

1 1 .
™\ average # cycles in a Hy =1+ -+ - =1.833 v
random permutation

38



Left-right minima and cycles

Q. Is there a 1:1 correspondence?

A. Yes!

@

15) ! | (3)
To build a permutation from a set of cycles: é’/ /@\ )
/ :‘

* Identify smallest as the leader in each cycle.

» Write cycles in decreasing order of leader.
1416 5 4106 15 212831113179

Vool | |

To build a set of cycles from a permutation: 1416 5 410615 212831113179

* Identify left-right minima.

* Build cycles with entries delimited by Irms ‘) @ @ /@\
(start a new cycle with each Irm). <‘ \@/

39
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1-Cycles

Q. How many I-cycles in a random permutation of size N?

@ 1

B =1
Bi/P1 =1

OO 2
@o

Bb=0+2=2
B2/P>=2/2 =1

B3=20+31+1:3=6
B3/P; =1

o

oo, 88
2 @@ @ @

2 @@@ :9 @
2 @@ ooe @
2 00f) OL @
2 @@@ @&T@& 0

all 1
B4=9-0+81+6:2+1-4=24
Bs/Py=24/24 =1

0

0

0

0

41



Construction for 1-cycles

Create |p|+1 perms from a perm p by inserting |p|+1 into
every position in every cycle (including the null cycle)

© 430 ©

@ 8

Q. How many 1-cycles in the set of constructed perms?

30 ©

Original perm has cyci(p) 1-cycles.

A. (lpl+ 1) cya(p) +1 —cya(p) =|p| cyci(p) + 1

/ T

|p| + 1 copies of the from the 1-cycles changed
original perm null cycle to 2-cycles

>

42



Average number of 1-cycles in a random permutation

CGF.

Apply construction.

Differentiate.

Solve.

Integrate.

Expand.

Z|p|

B(z) = chq ol Z N_
peP p N>0
S (pleyer (p) + 1)
= picyci(p) + 1) 70—
P (pl+ 1)
. lel pad
2) =2 Iployalp) g+ =28'(2) +
pEP pEP Pl
1
10\
B2 =G0
1
B(z) = T3
cumulated cost
B
N _ PN _
MB(z) = <5 =(1)

~ average # 1-cycles in a
random permutation

1 -2z

43



Application: Students and rooms revisited

A group of N students who live in single rooms go to a party that leads to a state of inebriation.
When returning, they each end up in a random room.

Q. What is the average number of students who wind up in their own room?

A. One ()

44



In-class exercises

Q. How many 2-cycles in a random permutation of size N?

A.1/2

Q. How many r-cycles in a random permutation of size N?

A.1/r

45



Inversions

Def. An inversion in a permutation is the number of pairs ()(3) with 1 > j.
Equivalent: Sum number of entries larger and to the left of each entry.

0o LOBO® VLO®G

Q. How many inversions in a random permutation of size N? 1 QO0B® @OO®G) 2
9585850

2 4

DO o Nolololofelololok

OO 1 Jololelofolololo

B o DO o OOQ) 2 : QOO GO ¢

P =1 ®@ ! @@@ ] 3 @@@@ @@@@ 4

P Po=2 DOW 2 2 VOO OORQO 3

Bi/Pi =0 Bo=0+1=1 OO 3 3 QWO OOWEQ 4
B2/P>=1/2= 0.5 P; =6 4 OO @O s

Bs=21+22+1:3=9 5 (WO WBR@DQ) -

B3/P3=9/6=1.5 Ps =24

B4=314+72+53+64+2:5+1:6=72
Ba/Ps=72/24 =3

46



Application: Insertion sort

i =10
sorted before i l untouched after i
public static void sort(Comparable[] a) A E GINUOTU RSTXM
{
int N = a.length; A E GI NUOU RSTMX
for (int i = 1; i < N; i++)
{ A E GI NIOW RS SMT X
for (int j = 1i; j > 0; j--)
if (less(aljl, alj-11)) A E GINUOU RMS T X
exch(a, j, j-1);
else break; A E GI NOMUZ RS T X
}
} A E GI NMOU RSTX

A E G I MNOIR S T X

Q. How many exchanges during the sort? exchanges put M in place among elements to its left

A. The number of inversions in the permutation.

Q. How many inversions in a random permutation? ||I|"|"I',|| I
Igorithms

Section 2.1

47



Construction for inversions

Create |p|+1 perms from a perm p by "largest” construction.

HOOOOLOO
HOOOOLO®
HOOOOOL®
HEOOOO®*xQ® = OCOOOO®
HOOOOOL®
HOOOOOL®
OOOOOOL®

Original perm has inv(p) inversions.

Q. How many inversions in the set of constructed perms?

A. (pl+1)inv(p) +(p|+1)|pl /2

lp| + 1 copies of the all the inversions
original perm caused by |p| + 1

<«— adds 1 inversion
<«— adds 2 inversions
<«— adds 3 inversions
<«— adds 4 inversions
<— adds 5 inversions

<«<— adds 6 inversions

48



Average number of inversions in a random permutation

CGF.

Apply construction.

Simplify.

Substitute.

Solve.

Expand.

Ja]
Z
S ILNCIE Pl v
peEP p N>0
S ((pl + 1yinv(p) + (1| + Dlpl/2) 2
= pl+ Dinv(p) + (Ip| + DIpl/2) 7
P (pl+ 1)
|p|+1 lp[+1
Z V4 V4 k
—Zlnv Zp\ (z)—i—EZkz
peP k>0
1 Z
— 7B _
B+ 5 a =
1 2
B(z) = 5 s
2(1 -2 B1/1'—¥:O
cumulated cost Ao
/ 32/2'—7:0.5 y
B
[2MB(2) = N :\ B3/3! = %:1.5
' average # inversions in a
random permutation By /4! = %:3
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Parameters of permutations

all can be handled in a similar manner

increasing -,

subsequence ~ -~

-

—
e

—
- —

left-to-right

minimum ~~_

9 14 4 1 12 2 10 13 5 6 11 3 8 15 7
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Bivariate generating functions

are the method of choice in analyzing combinatorial parameters.

Definition. A combinatorial class is a set of combinatorial objects and an
associated size function that may have an associated parameter.

Definition. The bivariate generating function (BGF ) associated with a class
is the formal power series

al
Azu) =Y %ucwt(a) (labelled)
acA '

where |a| is the size and cost(a) is the value of the parameter.

Advantages of BGFs:
« Carry full information.
« Easy to compute counting sequence and CGF (see next slide).
 Full distribution often available via analytic combinatorics.
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Basic BGF calculations

Definition. The bivariate generating function (BGF ) associated with a labelled class

Z marks size.

is the formal power series 2 cost(a)
u marks the parameter.

aGA
Define Ank to be the number of elements of size N with parameter value k.

N
z
Fundamental (elementary) identity A(z, u) E ucest@ — E E A/\/kmuk
aEA N>0 k>0 |

Q. How many objects of size N with value k?

A NIZ[HA Gz 0) = A ; \
%A(Z’ u) = Z Z/(A,\,k%uk_1

Q. Avsrage value ofaa parameter of a permutation ? A1) = 9, __ ZZkANkZﬁN'
A. [Z ]AU(Z,1) = %A(Z, U)‘u:1 N>0 k>0

[2MAu(z,1) = 88 (z,u)|,_,= ZkANk
u k>0 N 53



Review: Average

number of cycles in a random permutation with CGFs

CGF.

Decompose.

Simplify.

Substitute.

Solve.

Expand.

Pl N
4 z
B(z) =) cycles P)W NI
pEP N>0 '
S ((Ip] + T)eycles(p) + 1) 20
= p|+ 1)cycles(p) + 1) ———
Z (pT+ 1)
lpl+1 lpl+1
4 z
i
= (Ipht 2= (Ipl +1)!
Zk+1 1
B(2) + Y gy =B
k>0
1 1
In < OGF for the Harmonic numbers
11—z 1-2Z
cumulated cost
By -
N!

~ average # cycles in a
random permutation
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Average number of cycles in a random permutation with BGFs

BGF.

Apply construction .

Differentiate wrt z.

Substitute.

Solve for Bx(z, u).

Solve ODE.

Average number of cycles.

_ cycles(p)
B(z,u) Z ‘p|v

pEP
+
. Z Z|P| cycles(p)-H 4+ |p|ucycles(p))
= (Ipl + 1!
Pl Ip|
zP
BZ(Z, u) = Z Cyc/es(p)—H 4 Z |p‘ucycles(p)
2= Tpl)! 2 D!
= uB(z,u) + zB,(z,u)
u
Bz(z,u) = 1 B(z,u)
B(z,u) 1
’ (1 —z)u
1 1
B 1 1
(Z7 ) 1— 5 n —
]BU(Z71) Hl\/ ‘/

30 ©

€ & o
® ® g@‘:@
?@@

> <

ON
o
@ @ @ e

&

Q
®

©

C)
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Average number of cycles in a random permutation with BGFs and the symbolic method

Combinatorial class. P, the class of all permutations
Construction. P = SET(UCYC(Z))
BGF equation P(Z u) = eXp(u In 1 ) — 1 immediate from
’ 1—7/ (1 —Z)“ transfer theorem.
1 1
Average number of cycles. P,(z,1) = In

[ZN|Pu(z,1) = Hy

Bottom line: BGFs are the method of choice in analyzing parameters



Average number of cycles

of a given size in a random permutation

Combinatorial class.

Construction.

BGF equation

Average number of cycles.

P, the class of all permutations

P = SET(CYC, + uCYC,(2))

r r

1 Z

uz

In
P(z,u) =e

11—~z r r

[ZN]PU(Z,1) — 17 for N>r v

BGFs are the method of choice in analyzing parameters.

immediate from
transfer theorem.

Many, many
examples to follow.

Stay tuned for Part 2

Analytic
Combinatorics

Bhilippe lsjlet and
oher r
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Number of permutations of size N with k cycles

are known as Stirling numbers of the first kind.
all 2

J—

!
Notation: [/Z] OO0G 3 40000 @
@@ p) 3 @@ e

o @® : 3@@ @ @
© 1 g : of - 3@@®@@

J—

—

T B ERESERR

e
| 3@@®@ 5P 0 C

3 @@@@&@& ]
e [ o -

Egels

—
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[
I
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—
N W
[
I
O8]
—
w W
—
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Stirling numbers of the first kind (cycle numbers)

Fundamental identity Z |P|' uYIesP) = Z Z [ ] (1 jz)u

peEp N=>0 k>0
N
Distribution Z uu+1)...(u+N— 1)/\/' (Taylor's theorem)
N>0
N K=
\
1
N
1 1 P
2 3 1
[WMu(u+1)(u+2)(u+3)— 6 1 6 1

24 50 35 10 1

120 274 225 85 15 1



Stirling numbers of the first kind (cycle numbers) distribution

S
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Exercise 7.29

Arrangements.

AN mnonucn?
T

ANALYSIS
ALGORITHMS

Exercise 7.29 An arrangement of N elements is a sequence formed from a subset
of the elements. Prove that the EGF for arrangements is €?/(1 — z). Express the
coefficients as a simple sum and give a combinatorial interpretation of that sum.
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Exercise 7.45

Inversions in involutions.

AN mnonucn?
T

ANALYSIS
ALGORITHMS

Exercise 7.45 Find the CGF for the total number of inversions in all involutions of
length N. Use this to find the average number of inversions in an involution.
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Exercise 7.61

Cycle length distribution.

AN!NTKODI;(;T:;
ANALYSIS
ALGORITHMS

Exercise 7.61 Use asymptotics from generating functions (see §5.5) or a direct ar-
gument to show that the probability for a random permutation to have j cycles of
length k is asymptotic to the Poisson distribution e~*\ /4! with A\ = 1/k.
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Assignments for next lecture

1. Read pages 345-413 in text.

2. Run experiments to validate mathematical results.

Experiment 1. Generate 1000 random permutations for
N =100, 1000, and 10,000 and compare the average
number of cycles and 1-cycles with the values predicted
by analysis.

Experiment 2. Extra credit. Validate the results of Exercise 7.61
for N=1000 and k = 10 by generating 10,000 random
permutations and plotting the histogram of occurences of cycles
of length 10.

3. Write up solutions to Exercises 7.29, 7.45, and 7.61.

AN lNTRODUCT [ (

/ ANALYSIS
ALGORITHMS

SECOND EDITION

ROBERT SEDGEWICK
PHILIPPE FLAJOLET
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