
A N A L Y T I C C O M B I N A T O R I C S

P A R T O N E

http://aofa.cs.princeton.edu

6. Trees

Review
First half of class

• Introduced analysis of algoritihms.

• Surveyed basic mathematics needed for scientific studies.

• Introduced analytic combinatorics.

2

1 Analysis of Algorithms

2 Recurrences

3 Generating Functions

4 Asymptotics

5 Analytic Combinatorics

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

Note: Many applications beyond analysis of algorithms.

Orientation
Second half of class

• Surveys fundamental combinatorial classes.

• Considers techniques from analytic combinatorics to study them .

• Includes applications to the analysis of algorithms.

3

chapter combinatorial classes type of class type of GFtype of GF

6 Trees unlabeledunlabeled OGFs

7 Permutations labeledlabeled EGFs

8 Strings and Tries unlabeledunlabeled OGFs

9 Words and Mappings labeledlabeled EGFs

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

Note: Many more examples in book than in lectures.

A N A L Y T I C C O M B I N A T O R I C S

P A R T O N E

OF

http://aofa.cs.princeton.edu

6. Trees
•Trees and forests
•Binary search trees
•Path length
•Other types of trees

6a.Trees.Trees

Anatomy of a binary tree

0

1

2

3

4

5

6

height
h(t)

5

internal
node

root

external
node leaf

Definition. A binary tree is an external node or an internal node and two binary trees.

level
(depth)

Binary tree enumeration (quick review)

6

How many binary trees with N nodes?

T1 = 1

T2 = 2

T3 = 5

T4 = 14

“a binary tree is an external node
or an internal node connected to

two binary trees”

or

Symbolic method: binary trees

type class size GF

external node 0 1

internal node 1 z

Atoms

7

;(a) = � + a;(a)�OGF equation

Construction ; = A� + ;� A• � ;

A�

A•

Class T, the class of all binary trees

Size |t |, the number of internal nodes in t

OGF

[a5];(a) =
�

5+ �

�
�5
5

�
� �5�

�5�

How many binary trees with N nodes?

=
�

5��

;5a5;(a) =
�

[�;

a|[|

Forest and trees

Each forest with N nodes corresponds to

A tree with N +1 nodes
add a root

GF that
enumerates forests

GF that
enumerates trees

8

[a5]-(a) = [a5+�].(a)

a-(a) = .(a)

Anatomy of a (general) tree

0

1

2

3

4

9

level
(depth)

leaf

node

root

height
h(t)

Definition. A tree is a node (called the root) connected to the roots of trees in a forest.

Definition. A forest is a sequence of disjoint trees.

Forest enumeration

10

How many forests with N nodes?

F1 = 1

F2 = 2

F3 = 5

F4 = 14

Tree enumeration

11

How many trees with N nodes?

G1 = 1

G3 = 2

G3 = 5

G4 = 14

G2 = 1

Symbolic method: forests and trees

type class size GF

node Z 1 z

Atoms

12

Class F, the class of all forests

Size |f |, the number of nodes in f

How many forests and trees with N nodes?

Construction - = :,8(.) HUK . = A� -

Class G, the class of all trees

Size |g |, the number of nodes in g

-(a) � a-(a)� = �Solution

OGF equations -(a) =
�

� �.(a)
HUK .(a) = a-(a)

-5 = ;5 =
�

5+ �

�
�5
5

�
� �5�

�5� .5 = -5�� � �5��
�
�5�

Extract coefficients

Forest and binary trees

Each forest with N nodes corresponds to

13

A binary tree with N nodes
Connect each node to its

• left child
• right sibling

"rotation" correspondence

Aside: Drawing a binary tree

Approach 1:

• y-coordinate: height minus node depth

• x-coordinate: inorder node rank

Problem: distracting long edges

0 1 2 3 4 5

10

9

8

7
.
.
.

Design decision:
 Reduce visual clutter by omitting external nodes

14

Aside: Drawing a binary tree

Approach 2:

• y-coordinate: height minus node depth

• x-coordinate: centered and evenly spaced by level
Drawing shows tree profile

15

Typical random binary tree shapes (400 nodes)

Challenge: characterize analytically
16

A N A L Y T I C C O M B I N A T O R I C S

P A R T O N E

OF

http://aofa.cs.princeton.edu

6. Trees
•Trees and forests
•Binary search trees
•Path length
•Other types of trees

6b.Trees.BSTs

larger
than v

Binary search tree (BST)

smaller
than v

Fundamental data structure in computer science:

• Each node has a key, with comparable values.

• Keys are all distinct.

• Each node’s left subtree has smaller keys.

• Each node’s right subtree has larger keys.

Section 3.2

18

v

19

BST representation in Java

private class Node
{
 private Key key;
 private Value val;
 private Node left, right;
 public Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 }
}

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

Java definition: A BST is a reference to a root Node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.

smaller keys larger keys

Notes:

• Key and Value are generic types.

• Key is Comparable.

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public Value get(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

 public void put(Key key, Value val)
 { /* see next slide */ }

}

20

BST implementation (search)

X

MA

C H

E

S
to search for M

go left

then right

successful!

X

MA

C H

E

S
to search for Q

go left

then right

then right

unsuccessful

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 return x;
 }

21

BST implementation (insert)

X

MA

C H

E

S
to insert Q

go left

then right

then right

then attach
Q here

concise, but tricky,
recursive code

Q

Typical case

A

C

E

H

S

X

Average search cost ?

M

Key fact
The shape of a BST depends on the order of insertion of the keys.

22

Reasonable model: Analyze BST built from inserting keys in random order.

A

Best case

C

E

H

M

S

X

search cost guaranteed ~lg N

Worst case

A

C

E

H

M

S

X

Average search cost ~N/2 (a problem)

Typical random BSTs (80 nodes)

Challenge: characterize analytically (explain difference from random binary trees)
23

BST shape
is a property of permutations, not trees (!)

24

Note: Balanced shapes are more likely.

1 1

3

1

2

3

1

2

3

4

1 1

3

1

3

4

1

2

3

4

1 3 2 4

1 3 4 2

Mapping permutations to trees via BST insertion

Q. How many permutations map to this tree?

A. 2

Q. How many permutations map to this tree?

A.

25

"result in this tree shape
when inserted into an
initially empty BST"

2 1 3
2 3 1

4 2 1 3 5 6
4 2 1 5 3 6
4 2 1 5 6 3
4 2 5 1 3 6
4 2 5 1 6 3
4 2 5 6 1 3
4 5 2 1 3 6
4 5 2 1 6 3
4 5 2 6 1 3
4 5 6 2 1 3

4 2 3 1 5 6
4 2 3 5 1 6
4 2 3 5 6 1
4 2 5 3 1 6
4 2 5 3 6 1
4 2 5 6 3 1
4 5 2 3 1 6
4 5 2 3 6 1
4 5 2 6 3 1
4 5 6 2 3 1

�
�
�

�
· � · � = ��

perms mapping
to left subtree

perms mapping
to right subtree

ways to mix
left and right

root must be 4

1, 2, and 3
on the left

5 and 6
on the right

Mapping permutations to trees via BST insertion

Q. How many permutations map to a general binary tree t ?

26

A. Let Pt be the number of perms that map to t

root is |tL| + 1

|tR| nodes

right subtree tR

|tL| nodes

left subtree tL

first element
must be
 |tL| + 1

 |tL| smaller
elements

 |tR| larger
elements

7[=

�
|[3| + |[9|

|[3|

�
· 7[3 · 7[9

much, much larger when tL ≈ tR than when tL ≪ tR

(explains why balanced shapes are more likely)

Two binary tree models
that are fundamental (and fundamentally different)

27

BST model

• Balanced shapes much more likely.

• Probability root is of rank k: 1/N.

Catalan model

• Each tree shape equally likely.

• Probability root is of rank k:
�
R

�
�R� �
R

�
�

5� R+ �

�
�5� �R
5� R

�

�
5+ �

�
�5
5

�

Bob Sedgewick
k−1

Catalan distribution
Probability that the root is of rank k in a randomly-chosen binary tree with N nodes.

28

public static double[][] catalan(int N)
{
 double[] T = new double[N];
 double[][] cat = new double[N-1][];
 T[0] = 1;
 for (int i = 1; i < N; i++)
 T[i] = T[i-1]*(4*i-2)/(i+1);

 cat[0] = new double[1];
 cat[0][0] = 1;
 for (int i = 1; i < N-1; i++)
 {
 cat[i] = new double[i];
 for (int j = 0; j < i; j++)
 cat[i][j] = T[j]*T[i-j-1]/T[i];
 }
 return cat;
}

�
R

�
�R� �
R

�
�

5� R+ �

�
�5� �R
5� R

�

�
5+ �

�
�5
5

�

N/ 2 N

k (scaled by a factor of N)

0
0

.25

.357

.4

Note: Small subtrees are extremely likely.

Ex. Probability that at least one of the two subtrees is empty: ~1/2

Aside: Generating random binary trees

public class RandomBST
{
 private Node root;
 private int h;
 private int w;

 private class Node
 {
 private Node left, right;
 private int N;
 private int rank, depth;
 }

 public RandomBST(int N)
 { root = generate(N, 0); }

 private Node generate(int N, int d)
 { // See code at right. }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 RandomBST t = new RandomBST(N);
 t.show();
 }
}

stay tuned 29

private Node generate(int N, int d)
{
 Node x = new Node();
 x.N = N; x.depth = d;
 if (h < d) h = d;
 if (N == 0) x.rank = w++; else
 {
 int k = // internal rank of root
 x.left = generate(k-1, d+1);
 x.rank = w++;
 x.right = generate (N-k, d+1);
 }
 return x;
}

Note: “rank” field includes external nodes: x.rank = 2*k+1

StdRandom.uniform(N)+1

StdRandom.discrete(cat[N]) + 1;

random BST:

random binary tree:

Aside: Drawing binary trees

 public void show()
 { show(root); }

 private double scaleX(Node t)
 { return 1.0*t.rank/(w+1); }
 private double scaleY(Node t)
 { return 3.0*(h - t.depth)/(w+1); }

 private void show(Node t)
 {
 if (t.N == 0) return;
 show(t.left);
 show(t.right);
 double x = scaleX(t);
 double y = scaleY(t);
 double xl = scaleX(t.left);
 double yl = scaleY(t.left);
 double xr = scaleX(t.right);
 double yr = scaleY(t.right);
 StdDraw.filledCircle(x, y, .005);
 StdDraw.line(x, y, xl, yl);
 StdDraw.line(x, y, xr, yr);
 }

Exercise: Implement “centered by level” approach.

30

A N A L Y T I C C O M B I N A T O R I C S

P A R T O N E

OF

http://aofa.cs.princeton.edu

6. Trees
•Trees and forests
•Binary search trees
•Path length
•Other types of trees

6c.Trees.Paths

Path length in binary trees

0

1

2

3

4

5

6

height
h(t)

32

internal
node

root

external
node leaf

internal path length: internal
path

length
ipl (t)

0·1
+

1·2
+

2·4
+

3·3
+

4·1
+

5·1
=

28

PWS([) =
�

R��

R · {
�PU[LYUHS�UVKLZ�H[�KLW[O�R}

external path length:

0·0
+

1·0
+

2·0
+

3·5
+

4·5
+

5·1
+

6·2
=

52

external
path

length
xpl (t)

_WS([) =
�

R��

R · {
�L_[LYUHS�UVKLZ�H[�KLW[O�R}

Definition. A binary tree is an external node or an internal node and two binary trees.

level
(depth)

Path length in binary trees

33

notation definition

t binary tree

|t | # internal nodes in t

t # external nodes in t

tL and tR left and right subtrees of t

ipl (t) internal path length of t

xpl (t) external path length of t

Lemma 1.
Proof. Induction.

�[= | [| + �

recursive relationships

| [| = | [3 | + | [9 | + �

PWS([) = PWS([3) + PWS([9) + | [| � �

_WS([) = _WS([3) + _WS([9) + �[

Lemma 2.
Proof. Induction.

_WS([) = PWS([) + �| [|

�[= �[3 + �[9
= | [3 | + � + | [9 | + �

= | [| + �

_WS([) = _WS([3) + _WS([9) + �[
= PWS([3) + �| [3 | + PWS([9) + �| [9 | + | [| + �

= PWS([) + �| [|

�[= �[3 + �[9

Problem 1: What is the expected path length of a random binary tree?

34

Q10 = 1

Q44 = 4
Q45 = 2
Q46 = 8

4

4

4

4

T4 = 14

Q4/ T4 ≐ 5.286

Q4 = 4･4 + 2･5 + 8･6 = 74

5 5

6

6

6

6

6

6

6

6QNk = # trees with N nodes and ipl k

TN = # trees

QN = cumulated cost (total ipl)

Q21 = 2

1

1

T2 = 2
Q2 = 2

Q2/ T2 = 1

T1 = 1
Q1 = 0

Q1/ T1 = 0

Q32 = 1
Q33 = 4

2

3

3

3

3

T3 = 2

Q3/ T3 = 2.8

Q3 = 1･2 + 4･3 = 14

Average path length in a random binary tree

35

T is the set of all binary trees.

|t | is the number of internal nodes in t.

ipl(t) is the internal path length of t.

TN is the # of binary trees of size N (Catalan).

QN is the total ipl of all binary trees of size N.

Next: Derive a functional equation for the CGF.

Cumulative cost GF. 8(a) =
�

[�;
PWS([)a|[|

Average ipl of a random
N-node binary tree.

[a5]8(a)
[a5];(a)

=
[a5]8(a)
;5

Counting GF. ;(a) =
�

[�T

a|[| =
�

5��

;5a5 =
�

5��

�
5 + �

�
�5
5

�
a5 � �5�

�5�

CGF functional equation for path length in binary trees

36

Counting GF.

|tL| nodes
ipl(tL)

|tR| nodes
ipl(tR)

8(a) =
�

[�;

PWS([)a|[|

Decompose from de!nition. 8(a) = � +
�

[3�;

�

[9�;

�
PWS([3) + PWS([9) + |[3| + |[9|

�
a|[3|+|[9|+�

CGF.

;(a) =
�

[�;

a|[|

PWS([) = PWS([3) + PWS([9) + | [3 | + | [9 |

z^{|t_L|

= � + �a8(a);(a) + �a�;�(a);(a)

�

[3�;

PWS([3)a|[3|
�

[9�;

a|[9| = 8(a);(a)

�

[3�;

|[3|a|[3|
�

[9�;

a|[9| = a;�(a);(a)

empty tree root

Bob Sedgewick
0

Bob Sedgewick
0

CGF. 8(a) =
�

[�;

PWS([)a|[|

Expected path length of a random binary tree: full derivation

37

Solve. 8(a) =
�a�;(a);�(a)
� � �a;(a)

Do some algebra (omitted) a8(a) =
a

� � �a
� � � a�

� � �a
+ �

Expand. 85 � [a5]8(a) � �5

;(a) =
� �

�
� � �a
�a

;5 � �5

5
�
�5

;�(a) = �� �
�
� � �a

�a�
+

�
a
�
� � �a

� � �a;(a) =
�
� � �a

Compute average internal path length. 85/;5 � 5
�
�5

= �a;(a)
�
8(a) + a;�(a)

�

Decompose from de!nition. 8(a) = � +
�

[3�;

�

[9�;

�
PWS([3) + PWS([9) + |[3| + |[9|

�
a|[3|+|[9|+�

Bob Sedgewick
0

Problem 2: What is the expected path length of a random BST?

38

C10 = 1

C21 = 2

C32 = 2
C33 = 4 C44 = 12

C45 = 4
C46 = 8

CNk = # permutations resulting in a
 BST with N nodes and ipl k

N ! = # permutations

CN = cumulated cost (total ipl)

C2 = 2
C2/ 2! = 1

C1 = 0
C1/ 1! = 0

C3/ 3! ≐ 2.667

C3 = 2･2 + 4･3 = 16
C4/ 4! ≐ 4.833

C4 = 12･4 + 4･5 + 8･6 = 74

1

1

3

2

3

3

3

5 5

6

6

6

6

6

6

6

6

4

4

4

4

Recall: A property of permutations.

Counting EGF. 7(a) =
�

W�P

a|W|

|W|! =
�

5��

5!
a5

5!
=

�
� � a

Average path length in a BST built from a random permutation

39

P is the set of all permutations.

|p | is the length of p.

ipl(p) is the ipl of the BST built from p by inserting into an initially empty tree.

PN is the # of permutations of size N (N !).

CN is the total ipl of BSTs built from all permutations.

Next: Derive a functional equation for the cumulated cost EGF.

Cumulative cost EGF. *(a) =
�

W�7
PWS(W)

a|W|

|W|!

Expected ipl of a BST built
from a random permutation.

5![a5]*(a)
[a5]7(a)

=
5![a5]*(a)

5!
= [a5]*(a)

skip a step because
counting sequence

and EGF normalization
are both N !

Decompose. *(a) =
�

W3�P

�

W9�P

�
|W3| + |W9|

|W3|

�
a|W3|+|W9|+�

(|W3| + |W9| + �)!

�
PWS(W3) + PWS(W9) + |W3| + |W9|

�

CGF functional equation for path length in BSTs

40

Counting GF.Cumulative cost EGF. 7(a) =
�

W�P

a|W|

|W|! =
�

� � a
*(a) =

�

W�7
PWS(W)

a|W|

|W|!

perms lead to the same tree with
|pL| +1 at the root
pL nodes on the left
pR nodes on the right

|pL| + 1 smaller larger

�
|W3| + |W9|

|W3|

�

|pL| nodes
ipl(pL)

|pR| nodes
ipl(pR)

pL + 1

*�(a) =
�

W3�P

�

W9�P

a|W3|

|W3|!
a|W9|

|W9|!
�
PWS(W3) + PWS(W9) + |W3| + |W9|

�
Differentiate.

Tricky;
often works
with perms = �*(a)7(a) + �a7�(a)7(a) =

�*(a)
� � a

+
�a

(� � a)�

7(a) =
�

W�P

a|W|

|W|! =
�

� � a

7�(a) =
�

W�P

a|W|��

(|W| � �)!
=

�
(� � a)�

CGF functional equation for path length in BSTs

41

Look familiar?*�(a) =
�*(a)
� � a

+
�a

(� � a)�

Expected path length in BST built from a random permutation: full derivation

42

CGF.

Decompose. *(a) =
�

W3�P

�

W9�P

�
|W3| + |W9|

|W3|

�
a|W3|+|W9|+�

(|W3| + |W9| + �)!

�
PWS(W3) + PWS(W9) + |W3| + |W9|

�

*�(a) =
�

W3�P

�

W9�P

a|W3|

|W3|!
a|W9|

|W9|!
�
PWS(W3) + PWS(W9) + |W3| + |W9|

�
Differentiate.

*(a) =
�

W�7
PWS(W)

a|W|

|W|!

Solve the ODE
(see GF lecture). *(a) =

�
(� � a)�

ln
�

� � a
� �a

(� � a)�

Expand. *5 = �(5+ �)(/5+� � �) � �5 � �5 ln5

Simplify. = �*(a)7(a) + �a7�(a)7(a)

=
�*(a)
� � a

+
�a

(� � a)�

7(a) =
�

W�P

a|W|

|W|! =
�

� � a

7�(a) =
�

W�P

a|W|��

(|W| � �)!
=

�
(� � a)�

BST − quicksort bijection

smaller larger

first entry in a
permutation

(partitioning element)

partitioning
element

node corresponding
to first entry in a

permutation

Quicksort BST

Average # compares for quicksort
 = average external path length of BST built from a random permutation

model : random permutation
compares : N +1 + # compares for subfiles

model : random permutation
 xpl : N +1 + xpl of subtrees

 = average internal path length + 2N

43

larger
than v

smaller
than v

v

smaller larger

Height and other parameters

Approach works for any “additive parameter” (see text).
Height requires a different (much more intricate) approach (see text).

Summary:

44

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

typical shape average
path length height

random
binary tree

BST built
from random
permutation

�
�
�5

� � ln5

� �
�
�5

� J ln5

J .
= �.���

A N A L Y T I C C O M B I N A T O R I C S

P A R T O N E

OF

http://aofa.cs.princeton.edu

6. Trees
•Trees and forests
•Binary search trees
•Path length
•Other types of trees

6d.Trees.Other

Other types of trees in combinatorics

Classic tree structures:

• The free tree, an acyclic connected graph.

• The rooted tree, a free tree with a distinguished root node.

• The ordered tree, a rooted tree where the order of the subtrees is significant.

Ex. 5-node trees:

46

Enumeration? Path length? Stay tuned for Analytic Combinatorics

3 free trees

9 rooted trees

14 ordered trees

Other types of trees in algorithmics

47

Variations on binary trees:

• The t-ary tree, where each node has exactly t children.

• The t-restricted tree, where each node has at most t children.

• The 2-3 tree, the method of choice in symbol-table implementations.

Enumeration? Path length? Stay tuned for Analytic Combinatorics

3-ary tree 4-ary tree

3-restricted tree 4-restricted tree

2-3 tree 2-3-4 tree

An unsolved problem

Balanced trees are the method of choice for symbol tables

• Same search code as BSTs.

• Slight overhead for insertion.

• Guaranteed height < 2lgN.

• Most algorithms use 2-3 or 2-3-4 tree representations.

Ex. LLRB (left-leaning red-black) trees.

Section 3.3

48

Q. Path length of balanced tree built from a random permutation?

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

2-3 tree LLRB tree

a property of permutations, not trees

Balanced tree distribution
Probability that the root is of rank k in a randomly-chosen AVL tree.

49

Random binary tree

BST built from a random permutation

An unsolved problem

random AVL tree

LLRB tree root rank distribution
0

50

4

1k/N

10000 experiments per size

tr
ee

 si
ze

 N

0

0.5

p k (
of

fs
et

)

LLRB tree built from random perm (empirical)
50

Q. Path length of balanced tree built from a random permutation?

A N A L Y T I C C O M B I N A T O R I C S

P A R T O N E

OF

http://aofa.cs.princeton.edu

6. Trees
•Trees and forests
•Binary search trees
•Path length
•Other types of trees
•Exercises

6d.Trees.Other

Exercise 6.6

Tree enumeration via the symbolic method.

52

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

1/1

1/2

2/5

6/14

.

Exercise 6.27

Compute the probability that a BST is perfectly balanced.

53

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

Exercises 6.43

Parameters for BSTs built from a random permutation.

54

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

Answer these questions for BSTs built from a random permutation.

Assignments for next lecture

1. Read pages 257-344 in text.

2. Run experiments to validate mathematical results.

3. Write up solutions to Exercises 6.6, 6.27, and 6.43.

55

ALGORITHMS
ANALYSIS

OF

S E C O N D E D I T I O N

A N I N T R O D U C T I O N
T O T H E

R O B E R T S E D G E W I C K
P H I L I P P E F L A J O L E T

Experiment 1. Generate 1000 random permutations for
N = 100, 1000, and 10,000 and compare the average
path length and height of the generated trees with the
values predicted by analysis.

Experiment 2. Extra credit. Do the same for random binary trees.

A N A L Y T I C C O M B I N A T O R I C S
P A R T O N E

http://aofa.cs.princeton.edu

6. Trees

