ANALYTIC COMBINATORICS

PART ONE

AN INTRODUCTION |

ANALYSIS 6. Trees
ALGORITHMS

SECOND EDITION

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

Review

First half of class
e Introduced analysis of algoritihms.

 Surveyed basic mathematics needed for scientific studies.

e Introduced analytic combinatorics.

1 Analysis of Algorithms
2 Recurrences

3 Generating Functions

4 Asymptotics

5 Analytic Combinatorics

Note: Many applications beyond analysis of algorithms.

* / ANALYSIS

Orientation

Second half of class
 Surveys fundamental combinatorial classes.
» Considers techniques from analytic combinatorics to study them .
e Includes applications to the analysis of algorithms.

chapter combinatorial classes type of class type of GF
6 Trees unlabeled OGFs
7 Permutations labeled EGFs
8 Strings and Tries unlabeled OGFs
9 Words and Mappings labeled EGFs

Note: Many more examples in book than in lectures.

ANALYTIC COMBINATORICS

PART ONE

6. Trees

* Trees and forests

AN INTRODUCTION |

e Binary search trees

ANALYSIS
ALGORITHMS * Path length

SECOND EDITION

 Other types of trees

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

6a.Trees.Trees

Anatomy of a binary tree

Definition. A binary tree is an external node or an internal node and two binary trees.

level

root (depth)
0
internal 1

node ™
2
3
A
external 4
node leaf
N

5

6\

height

h(t)

Binary tree enumeration (quick review)

How many binary trees with N nodes?

>

Th=1

I
VA

T,=2

P
A
O
b
3

AN

Ta=14

Symbolic method: binary trees

How many binary trees with N nodes?

Class T, the class of all binary trees

Size |t|, the number of internal nodes in t

S T(z) = Zz'” = Z Tz

teT N=0

Construction

OGF equation

Atoms type class size GF
external node /0 0]
internal node 7 1 Z

“a binary tree is an external node
or an internal node connected to
two binary trees”

IT=/0+T xZexT

] or

T(z) =1+ zT(2)* \

\

Forest and trees

Each forest with N nodes corresponds to

A

Z"]F(z) = [2"""]C(2)

zF(z) = G(z)
/ \
GF that GF that

enumerates forests enumerates trees

A tree with N +1 nodes

/

add a root

Anatomy of a (general) tree

Definition. A forest is a sequence of disjoint trees.

Definition. A tree is a node (called the root) connected to the roots of trees in a forest.

root level
N (depth)

0

node 1

2
3

4

IeTaf \
height
h(t)

Forest enumeration

How many forests with N nodes?

ree enumeration

How many trees with N nodes?

Symbolic method: forests and trees

How many forests and trees with N nodes?

Class F, the class of all forests Atoms type class size GF

Size |f], the number of nodes in f node Z 1 z

Class G, the class of all trees

Size |g|, the number of nodes in g

Construction F = SEQ(G) and G =Z7xF

1

OCGF equations ~ F(2) = 1——C(Z) and G(z) = zF(z)

Solution F(z) — zF(2)* =1

Extract coefficient F T 1 2N 4" A
Xtract coeitricients = = — ~ = ~
NEINERNTAIN) T e v T ==

Forest and binary trees

Each forest with N nodes corresponds to

Connect each node to its
o |eft child
« right sibling

)

"rotation" correspondence

A binary tree with N nodes

Aside: Drawing a binary tree

Approach 1:
 y-coordinate: height minus node depth
« x-coordinate: inorder node rank

10

012345....

Design decision:
Reduce visual clutter by omitting external nodes

Problem: distracting long edges

Aside: Drawing a binary tree

Approach 2:
 y-coordinate: height minus node depth
« x-coordinate: centered and evenly spaced by level

NN

Drawing shows tree profile

Typical random binary tree shapes (400 nodes)

Challenge: characterize analytically

ANALYTIC COMBINATORICS

PART ONE

6. Trees

e Trees and forests

AN INTRODUCTION |

o 2l * Binary search trees

ANALYSIS
ALGORITHMS * Path length

SECOND EDITION

 Other types of trees

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

6b.Trees.BSTs

Binary search tree (BST)

Fundamental data structure in computer science:
* Each node has a key, with comparable values.
» Keys are all distinct.
e Each node’s left subtree has smaller keys.

e Each node’s right subtree has larger keys.

Algorithms

Section 3.2

smaller
than v

larger
than v

BST representation in Java

Java definition: A BST is a reference to a root Node.

Notes:
A Node is comprised of four fields: * Key and Value are generic types.
« A Key and a Value. » Key is Comparable.
* A reference to the left and right subtree.
smaller keys larger keys
private class Node
{ BST
private Key key;
private Value val; Node———| key | val

private Node left, right;
public Node(Key key, Value val) }////ﬁ< //

{ Teft right
this.key = key;

this.val val;
} BST with smaller keys BST with larger keys

Binary search tree

BST implementation (search)

public class BST<Key extends Comparable<Key>, Value>

{

to search for M
go left

private Node root;

private class Node
{ /* see previous slide */ }

public Value get(Key key) <—successfu|!
{

Node x = root;
while (x != null)

{

int cmp = key.compareTo(x.key);

if (cmp < 0) x = x.left;

else if (cmp > 0) x = x.right; to search for Q

else if (cmp == 0) return x.val; go left
}

return null;

}

public void put(Key key, Value val)
{ /* see next slide */ }

then right

V\\\unsuccessful

BST implementation (insert)

public void put(Key key, Value val)

{ root = put(root, key, val); } to insert @
private Node put(Node x, Key key, Value val) go left
{
if (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else if (cmp == 0) x.val = val;
return x;
ks

concise, but tricky,

then attach
recursive code Q here

21

Key fact

The shape of a BST depends on the order of insertion of the keys.

Best case Typical case Worst case

search cost guaranteed ~lg N

Average search cost ?

Average search cost ~N/2 (a problem)

Reasonable model: Analyze BST built from inserting keys in random order.

22

Typical random BSTs (80 nodes)

e

Challenge: characterize analytically (explain difference from random binary trees)

23

BST shape

is a property of permutations, not trees (!)

Lol S

3214
4321 3241 1234
321){\ 3421 ,} Q o

4312 3124 1243 % 9
PN i %
21 Q)

1 213

4213 1324
/X 231 4231 1342
12

Note: Balanced shapes are more likely.

24

Mapping permutations to trees via BST insertion

Q. How many permutations map to this tree? «<——— when inserted into an

A. 2

Q. How many permutations map to this tree?

ways to mix
left and right

l

A (3)/z 1\20

perms mapping perms mapping
to left subtree to right subtree

1,2,and 3
on the left

"result in this tree shape

initially empty BST"

NN
w R
R W

root must be 4

/

5and 6
on the right

I I e e s T R
Ul Ul U1 UTNDNDNDNNDN

AOAONNNUVIVIUVERE =B

NORPEFPFORREVIOVIW

P RPOWREOWO WU

w w wowwo wo O

B e Sl S N S S S S
Ul U1 U1 UTNDNDNDNDNDN

A NDNDNUITUTUTLWWW

N O W WwWowwou un =

W woRrkr woOREORE U
RF R RORRFERFORE OO

25

Mapping permutations to trees via BST insertion

Q. How many permutations map to a general binary tree t?

R— root is |tr| + 1
left subtree t. \ / right subtree tr

|t| nodes |tr| nodes

A. Let P be the number of perms that map to t

first element
|| smaller |tr| larger

must be
|tL| + |tR’ |t + 1 elements elements
P t — - P t* P tr S

[t |

T

much, much larger when t. = tr than when t. « tr
(explains why balanced shapes are more likely)

26

Two binary tree models

that are fundamental (and fundamentally different)

65T mode i ﬁﬁﬁ?
 Balanced shapes much more likely.
 Probability root is of rank k: 1/N. %W ’W

Catalan model

e Each tree shape equally likely.
 Probability root is of rank k:

1 2k —2 1 2N — 2k
k k N—k+1\ N—k

1 2N
k-1 N+1<N)

27

Bob Sedgewick
k−1

Catalan distribution

Probability that the root is of rank k in a randomly-chosen binary tree with N nodes.

public static double[][] catalan(int N)
{

1(2k-2 1 2N =2k double[] T = new double[N];

N—k4+1

k N —k double[][] cat = new double[N-1][]:
T[O] = 1;
for (int i = 1; i < N; i++)

T[] = T-1]1*(4%1-2)/(G+1);

cat[0] = new double[1l];
cat[0][0] = 1;
for (int i = 1; i < N-1; i++)
{
cat[i] = new double[i];
for (int j = 0; j < 1; j++)
0 N/2 N cat[i1[§]1 = T[j1*T[i-j-11/T[i1;
k (scaled by a factor of N) }
return cat;

Note: Small subtrees are extremely likely.

\ Ex. Probability that at least one of the two subtrees is empty: ~1/2

28

Aside: Generating random binary trees

public class RandomBST

{

Note: “rank” field includes external nodes: x.rank = 2*k+1

private Node root;
private int h;
private int w;

private Node generate(int N, int d)
{

Node x = new Node();
; X.depth = d;

private class Node = N
if (h < d) h = d;
N =

{
private Node left, right; if (N == 0) x.rank = w++; else
private int N; {
private int rank, depth; int k = // internal rank of root
1 x.left = generate(k-1, d+1);
x.rank = w++;
pubTic RandomBST(int N) x.right = generate (N-k, d+1);
{ root = generate(N, 0); } }
return x;
private Node generate(int N, int d) }
{ // See code at right. }
public static void main(String[] args)
{
int N = Integer.parselnt(args[0]);) .
e dlenBST © o e RerndsESTan random BST: StdRandom.uniform(N)+1
t.show(); random binary tree: StdRandom.discrete(cat[N]) + 1;
}

stay tuned

29

Aside: Drawing binary trees

public void show()
{ show(root); }

private double scaleX(Node t)

{ return 1.0*t.rank/(w+1); }
private double scaleY(Node t)

{ return 3.0%*Ch - t.depth)/(w+1); }

private void show(Node t)

{

if (t.N == 0) return;

show(t.left); ';?;a
show(t.right);

double x scaleX(t);

double y scaleY(t);

double = scaleX(t.left);

x1
double y1 = scaleY(t.left);
double xr = scaleX(t.right);
double yr = scaleY(t.right);
StdDraw.filledCircle(x, y, .005);
StdDraw.Tine(x, y, x1, yl1);
StdDraw.Tine(x, y, xr, yr);

Exercise: Implement “centered by level” approach.

ANALYTIC COMBINATORICS

PART ONE

6. Trees

e Trees and forests

AN INTRODUCTION |

e Binary search trees

ANALYSIS
ALGORITHMS * Path length

SECOND EDITION

 Other types of trees

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

6c.Trees.Paths

Path length in binary trees

Definition. A binary tree is an external node or an internal node and two binary trees.

internal

node ™

A

external

node leaf

internal path length:

external path length:

ipl(t) =

xpl(t) =

level
root (depth)
0 0-1 0-0
+ +
1 1-2 1-0
+ +
2 2-4 2.0
+ +
3 3-3 3.5
+ +
4 4-1 4.5
+ +
> 5-1 5.1
= +
6\ 2t 6-2
height _K\ ;;
Zk - {# internal nodes at depth k} h(t) mterrr\]al N
k20 pat external
B length path
ipl(t)
Zk- {# external nodes at depth k} p Ien/%;?
xp

k>0

32

Path length in binary trees

notation definition
t binary tree
|t] # internal nodes in t
external nodes in t
t. and tg left and right subtrees of t
ipl (t) internal path length of t
xpl (t) external path length of t

Lemma 1. [t]=[t]|+ T

Proof. Induction.

[t]= [t] + [t=]
=t |4+ 14 |te| +1

=|t|+1

recursive relationships
[t =lt]+|t]+1
[]=[a]+
ipl(t) = ipl(t;) + ipl(tg) + | t| — 1
xpl(t) = xpl(t;) + xpl(tg) +

Lemma 2. xpl(t) = ipl(t) + 2| t|

Proof. Induction.
xpl(t) = xpl(t;) + xpl(tg) +
= ipl(t;) + 2|t | +ipl(tr) + 2| tr | + | t| + 1

= ipl(t) +2|t|

33

Problem 1: What is the expected path length of a random binary tree?

Qnk = # trees with N nodes and ipl k
Tn = # trees

Qv = cumulated cost (total ipl)

A

A 1
Qo=1)x
T =1 Qo1 =2
Q=0 T,=2

Q/Th =0 Q =
Q/T2=1

-
¢
n
b

~

32
33

N

w

1
4

ISV

Qas =4 Ta=14
T3=2
Qas = Qs=44+2-5+8'6=74

=1-2+43=14
% i Qa6 =8 Qa/Ts = 5.286
Q/T3=2.8 34

Average path length in a random binary tree

T is the set of all binary trees.
|t| is the number of internal nodes in t.
ipl(t) is the internal path length of t.

Tn is the # of binary trees of size N (Catalan).
Qu is the total ipl of all binary trees of size N.

Counting GF. T(Z) — ZZM — Z TNZN — Z

teT N>0 N>0
Cumulative cost GF. Q(Z) = Z ip'(t)ZM
teT
Average ipl of a random [ZN]Q(Z) . [ZN]Q(Z)
N-node binary tree. [ZN] T(Z) o TN

Next: Derive a functional equation for the CGFE.

1

N+ 1

(

2N
N

4/\/
VN3

35

It_LI

CGF functional equation for path length in binary trees

Counting GF.

CGF.

Decompose from definition.

T(z) = Zzltl A

teTl \\
Qz) =) ipl(t)z"
teT |t.] nodes |tr| nodes
ipl(tL) \ ipl(tr)
ipl(t) = ipl(t;) + ipl(tg) + | t, | + | tr |
empty tree root
- O
! 1/
Q@) =1+ Y > (ipl(tr) +ipl(te) + Jtu] + Jtal) 21l
teTtreT
0 > ipl(t)2 > 2% = Q(z)T
ueT tr€T

Z |tL|Z|tL| ZZItRI =7T'(2)

teT treT

= 14+22Q(2)T(2) +22°T'(2)T(2)

(2)

7(z)

36

Bob Sedgewick
0

Bob Sedgewick
0

Expected path length of a random binary tree: full derivation

CGF. Q(z) = Zip/(t)z“’
teT
Decompose from definition. Q(z) =1+ Z Z(,‘p/(&) + ipl(tg) + |tz| + ‘tRDthL|+|tR|+1
teT treT
0
=227(2)(Q(z) + zT'(z))
22°T(2)T'(z Y N
Solve. Q(Z) — 1 —(22>T(i)) T(z) = 1 \2/12 4 . Nj/m
T,(Z)__1 —er 1
Do some algebra (omitted) zQ(z) = 1 Z4 _ -z + 1 e zV1 —4z
B 1—4z 1-22T(2) = V1 -4z
Expand. On = [ZN]Q(z) ~ 4N

Compute average internal path length. Qn/Tn ~ @

37

Bob Sedgewick
0

Problem 2: What is the expected path length of a random BST?2

Cnk = # permutations resulting in a
BST with N nodes and ipl k

N! = # permutations

Cnv = cumulated cost (total ipl)

k\

21

: N

1
Cio= 12
G=0 =2
CG/11=0 G=2
G/2!'=1

Recall: A property of permutations.

G2 =2

Gs=4

(3=2-2+4-3=16
C3/3! = 2.667

6

Ci=124+4-5+8:6=74
Cs/4! = 4.833

38

Average path length in a BST built from a random permutation

P is the set of all permutations.
|p| is the length of p.
ipl(p) is the ipl of the BST built from p by inserting into an initially empty tree.

Py is the # of permutations of size N (N!).
Cw is the total ipl of BSTs built from all permutations.

Jd N 1
Z Z
Counting EGF. P(z) = Z w — Z N!m — 1— 7
pEP N>0
| pald
Cumulative cost EGF. C(Z) Z lpl() ’,O|'
peP
E , . /\/'[ZN]C(Z) N! [ZN]C(Z) skip a step because
xpected ipl of a BST built . AL _ [ZN]C(Z) counting sequence
from a random permutation. [ZN]P(Z) T N! o “— and EGF nbormhalization
’ are both N!

Next: Derive a functional equation for the cumulated cost EGFE.

CGF functional equation for path length in BSTs

P Pl 1
Cumulative cost EGF. C(z) Z |p|()|Z " Counting GF. P(Z) — Z ‘Z " — —
peP P pepP PI>
lp.|+1 smaller larger /CN?L + 1
| 4%%
TP rrT] \
‘PL‘ i |PR‘ perms lead to the same tree with
|pL| +1 at the root
(L]) p. nodes on the left |f9_L| ”Odes‘ “9?' nodes
pr nodes on the right ipl(p) | ipl(pr)
lpL| + |PR|) ZlPel+Ipr|+1 . _

Decompose. (ipl + ipl + +

P;Dp;? |pe| (Ipe| + |pg| + 1)! (ipl(pe) + ipl(pr) + |pc] + |Pr|)

. . Z|pl| Z|pR
Differentiate. =2 2 e Pl +iplpe) + lpul +Ipel)) 52l
T pLEP prEP o Ip|! 1 — 7
Tricky;
2C(2) 27 lp|—1

often works _ / _ oy z B 1
with perms =2C(2)P(z) +2zP'(2)P(z) = T + =2 Plz)=) o= = =27

CGF functional equation for path length in BSTs

C'(2)

_2C(2)

27

11—z

(1= 2) Look familiar?

Solving the Quicksort recurrence with OGFs

2
Cn=N+1 +N Z Crn
1<k<N
Multiply both sides by N. NCy = N(N + 1) +2 Z Cr_1
1<k<N

Multiply by z¥ and sum. Z NCnZN = Z NN+ 1)zZN +2 Z Z Cpq 2N

N1 N>1 N>11<k<N

Evaluate sums to get an

2
! —
ordinary differential equation Clz2) = +2

(1-2)3 1-z

Solve the ODE. (1 =2)%C(2)) = (1 —2)*C(z) —2(1 — 2)C(2)

= (1-22(C(2) -2]C(_Z)Z) o 2 .
Integrate. C(z) = 7(1 _22)2 In T3
ExPand- CN = [ZN](_]_Z—Z)2 In ‘]'ITZ = 2(N =+ 1)(HN+1 — 1)

homogeneous equation
P'(2) = 2p(2)/(1 - 2)
solution (integration factor)

p(2)=1/(1 - 2)?

21

41

Expected path length in BST built from a random permutation: full derivation

CGF.

Decompose.

Differentiate.

Simplify.

Solve the ODE

(see GF lecture).

Expand.

. pad
C(z) = Z ipl P)|p_|,
peP .
4 Zlpel+1pr|+1 _ :
=2 > (‘ml |m)(l |+ | |+1)v('P/<PL)+’P’(PR)+‘p“HpRD
=y S IOL ,OL PR !
Z|PL| Z|pR

=2 2

(ipl(pL) + ipl(pr) +] + |px])
pe|! |pr]!
pLEP preP

|l 1
P(z) = -
—2C()P(2) + 22P (2)P(2) 2T
, Zlpl—1 1
_ 2z 2z P@ =2 =i~ 7
11—z (1—-2)3 P
C(Z) _ 2 In 1 B 27

(1—=22 11—z (1-2)7?

Cn = 2(N + 1) (Hs —1)—2/\/

42

BST — quicksort bijection

QU icksort BST node corresponding
to first entry in a
/ permutation
first entry in a ﬁ)\
permutation

(partitioning element)
smaller larger

=N

partitioning
element smaller larger
smaller larger
%N l m than fhan
model: random permutation model: random permutation
compares: N+1 + # compares for subfiles xpl: N +1 + xpl of subtrees

Average # compares for quicksort
= average external path length of BST built from a random permutation

= average internal path length + 2N

43

Height and other parameters

Approach works for any “additive parameter” (see text).
Height requires a different (much more intricate) approach (see text).

Summary:

random
binary tree

BST built
from random
permutation

average
path length

typical shape

~ vV aN

height

~ 2vVaN

~clnN

c=4311

44

ANALYTIC COMBINATORICS

PART ONE

6. Trees

e Trees and forests

o T e Binary search trees

ANALYSIS
ALGORITHMS * Path length

SECOND EDITION

* Other types of trees

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

6d.Trees.Other

Other types of trees in combinatorics

Classic tree structures:
Analytic

e The free tree, an acyclic connected graph. Combinatorics

Philippe Flajolet and
dgewi

e The rooted tree, a free tree with a distinguished root node.
e The ordered tree, a rooted tree where the order of the subtrees is significant.

Ex. 5-node trees:

3 free trees —> x R St

14 ordered trees ——

9 rooted trees ——> d(}f\
Li

Enumeration? Path length? Stay tuned for Analytic Combinatorics

Other types of trees in algorithmics

Variations on binary trees:
. Analytic

e The t-ary tree, where each node has exactly t children. Combinatorics

e The t-restricted tree, where each node has at most t children. =

e The 2-3 tree, the method of choice in symbol-table implementations.

Enumeration? Path length? Stay tuned for Analytic Combinatorics

47

An unsolved problem

Balanced trees are the method of choice for symbol tables
« Same search code as BSTs. |
« Slight overhead for insertion. |

HE{E‘][HHU[;WMH

i

Algorithms

« Guaranteed height < 2IgN.

............... | kevin warwe

» Most algorithms use 2-3 or 2-3-4 tree representations. et
ection 3.3

Ex. LLRB (left-leaning red-black) trees.

@ <«—— LLRB tree

Q. Path length of balanced tree built from a random permutation? <«——a property of permutations, not trees

48

Balanced tree distribution

Probability that the root is of rank k in a randomly-chosen AVL tree.

Random binary tree

BST built from a random permutation

49

An unsolved problem

Q. Path length of balanced tree built from a random permutation?

random AVL tree LLRB tree built from random perm (empirical)

50

ANALYTIC COMBINATORICS

PART ONE

6. Trees

e Trees and forests

AN INTRODUCTION

T e Binary search trees

ANALYSIS
ALGORITHMS * Path length

SECOND EDITION

e Other types of trees
ROBERT SEDGEWICK ‘ ExerCises

PHILIPPE FLAJOLET

http://aofa.cs.princeton.edu

6d.Trees.Other

Exercise 6.6

Tree enumeration via the symbolic method.

Exercise 6.6 What proportion of the forests with /N nodes have no trees consisting of
asingle node? For N = 1,2, 3, and 4, the answer is 0,1/2, 2/5, and 3/7, respectively.

AN ‘NTKODUCTE
T

/ ANALYSIS
ALGORITHMS

11

. P
1/1 I A
e] AN
2/5
6/14

52

Exercise 6.27

Compute the probability that a BST is perfectly balanced.

Exercise 6.27 For N = 2™ — 1, what is the probability that a perfectly balanced
tree structure (all 2" external nodes on level n) will be built, if all N! key insertion
sequences are equally likely?

: AN mnongﬁiﬂ
ANALYSIS
e

(OO O OO O

53

Exercises 6.43

Parameters for BSTs built from a random permutation.

Answer these questions for BSTs built from a random permutation.

Exercise 5.15 Find the average number of internal nodes in a binary tree of size n
with both children internal. ®

& Exercise 5.16 Find the average number of internal nodes in a binary tree of size n
ANéLYSIS with one child internal and one child external. ®
ALGORITHMS

54

Assignments for next lecture

1. Read pages 257-344 in text.

2. Run experiments to validate mathematical results.

Experiment 1. Generate 1000 random permutations for
N =100, 1000, and 10,000 and compare the average
path length and height of the generated trees with the
values predicted by analysis.

3. Write up solutions to Exercises 6.6, 6.27, and 6.43.

Experiment 2. Extra credit. Do the same for random binary trees.

AN lNTRODUCT ?,‘

ANALYSIS
ALGORITHMS

SECOND EDITION

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

55

ANALYTIC COMBINATORICS
PART ONE

ANALYSIS 6. Trees
ALGORITHMS

http://aofa.cs.princeton.edu

