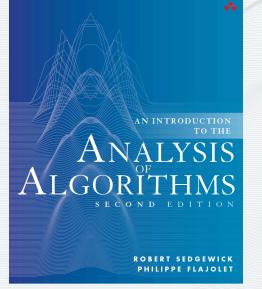
ANALYTIC COMBINATORICS

PART ONE



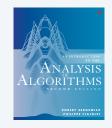
http://aofa.cs.princeton.edu

6. Trees

Review

First half of class

- Introduced analysis of algoritihms.
- Surveyed basic mathematics needed for scientific studies.
- Introduced analytic combinatorics.



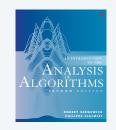
1	Analysis of Algorithms		
2	Recurrences		
3	Generating Functions		
4	Asymptotics		
5	Analytic Combinatorics		

Note: Many applications beyond analysis of algorithms.

Orientation

Second half of class

- Surveys fundamental combinatorial classes.
- Considers techniques from analytic combinatorics to study them .
- Includes applications to the analysis of algorithms.

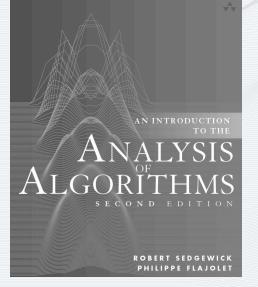


chapter	combinatorial classes	type of class	type of GF
6	Trees	unlabeled	OGFs
7	Permutations	labeled	EGFs
8	Strings and Tries	unlabeled	OGFs
9	Words and Mappings	labeled	EGFs

Note: Many more examples in book than in lectures.

ANALYTIC COMBINATORICS

PART ONE



http://aofa.cs.princeton.edu

6. Trees

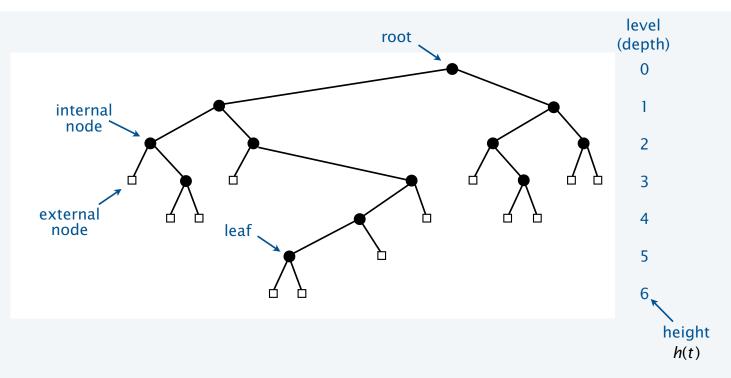
• Trees and forests

- Binary search trees
- Path length
- Other types of trees

6a.Trees.Trees

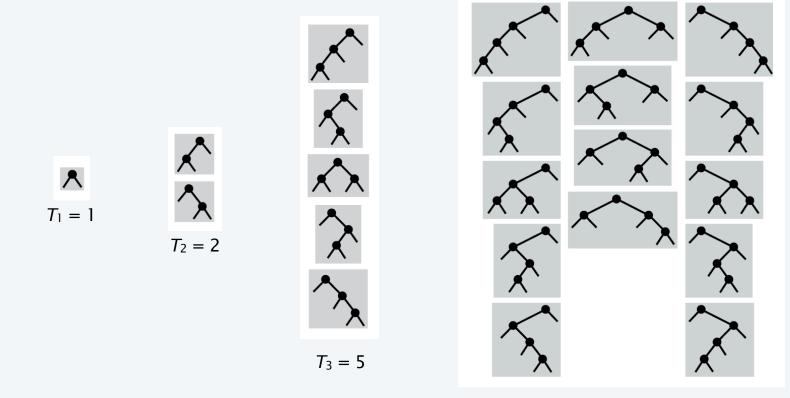
Anatomy of a binary tree

Definition. A *binary tree* is an external node or an internal node and two binary trees.



Binary tree enumeration (quick review)

How many binary trees with *N* nodes?



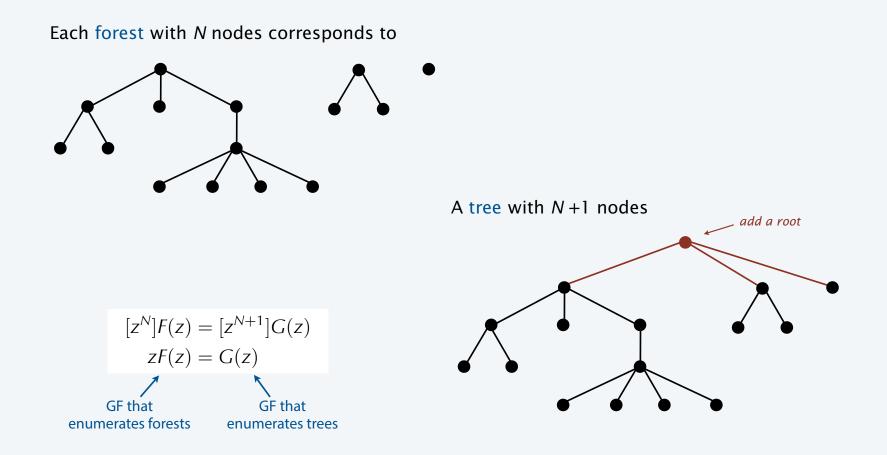
 $T_4 = 14$

Symbolic method: binary trees

How many binary trees with *N* nodes?

Class	T, the class of all binary trees	Atoms	type	2	class	size	GF	
Size	t , the number of internal nodes in t		external	node	Z_{\Box}	0	1	
			internal	node	Z.	1	Z	
OGF	$GF T(z) = \sum_{t \in T} z^{ t } = \sum_{N \ge 0} T_N z^N$							
				"a binary tree is an external node or an internal node connected to				
Construction $T = Z_{\Box} + T \times$		$Z_{\bullet} \times T$		two binary trees"				
OGF equation $T(z) = 1 + z$		$T(z)^2$] or			
	$[z^N]T(z) = \frac{1}{N+1} \binom{2}{N}$	$\binom{N}{N} \sim \frac{4^N}{\sqrt{\pi N}}$	$\overline{\sqrt{3}}$		· 			

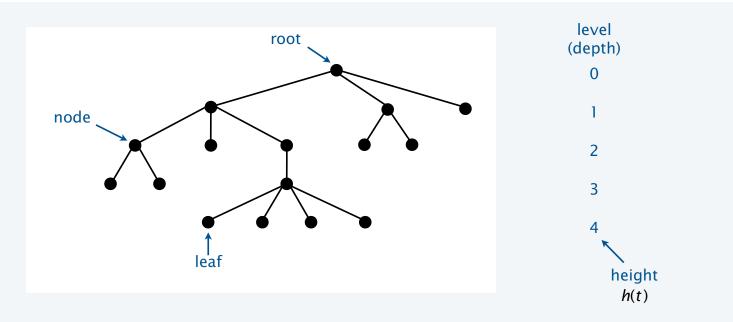
Forest and trees



Anatomy of a (general) tree

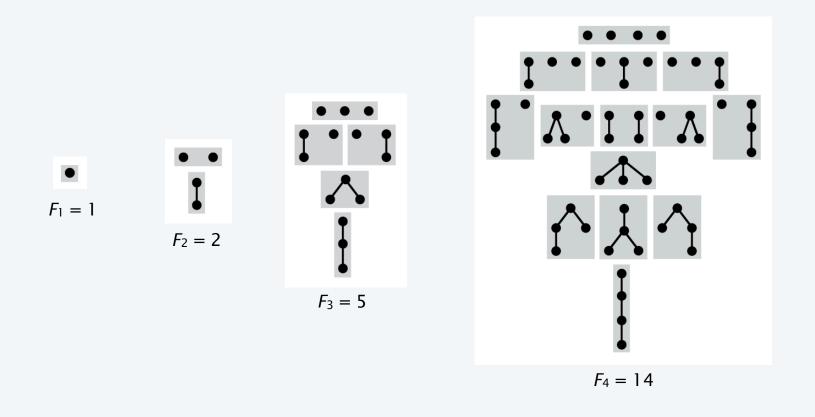
Definition. A *forest* is a sequence of disjoint trees.

Definition. A tree is a node (called the root) connected to the roots of trees in a forest.



Forest enumeration

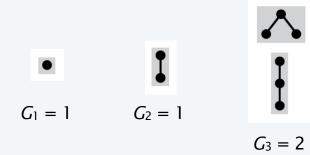
How many **forests** with *N* nodes?

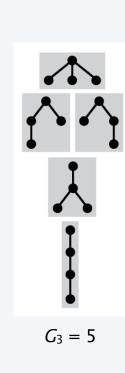


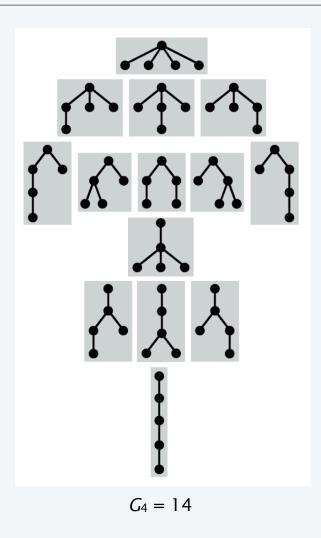
10

Tree enumeration

How many trees with *N* nodes?







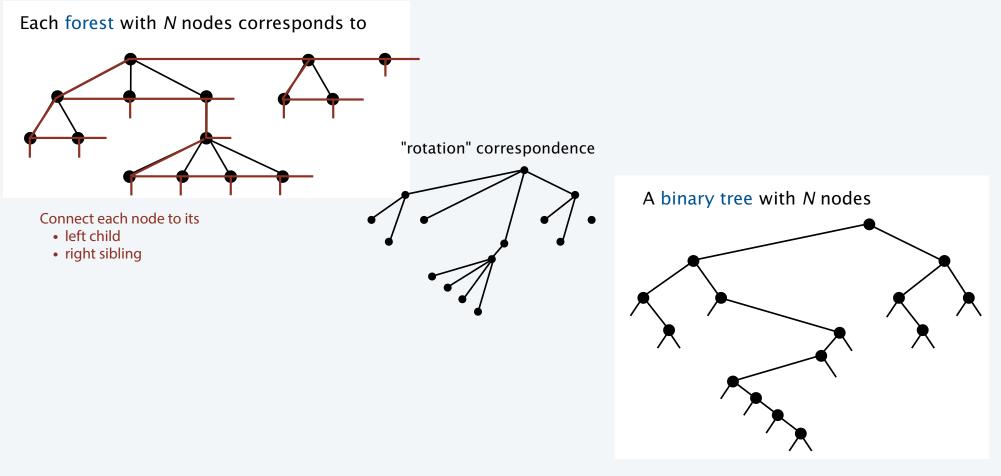
Symbolic method: forests and trees

How many **forests** and **trees** with *N* nodes?

Class	F, the class of all forests	Atoms	type	class	size	GF
Size	f , the number of nodes in f		node	Ζ	1	z
Class	<i>G</i> , the class of all trees					
Size	g , the number of nodes in g					

Construction
$$F = SEQ(G)$$
 and $G = Z \times F$
OGF equations $F(z) = \frac{1}{1 - G(z)}$ and $G(z) = zF(z)$
Solution $F(z) - zF(z)^2 = 1$
Extract coefficients $F_N = T_N = \frac{1}{N+1} {2N \choose N} \sim \frac{4^N}{\sqrt{\pi N^3}}$ $G_N = F_{N-1} \sim \frac{4^{N-1}}{\sqrt{\pi N^3}}$

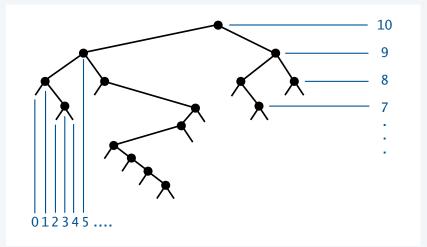
Forest and binary trees



Aside: Drawing a binary tree

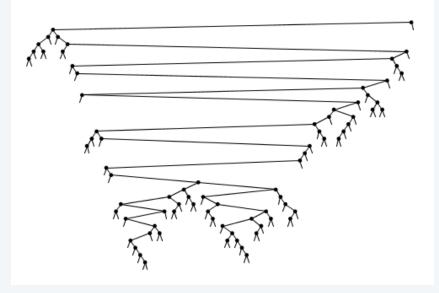
Approach 1:

- y-coordinate: height minus node depth
- x-coordinate: inorder node rank



Design decision: Reduce visual clutter by omitting external nodes

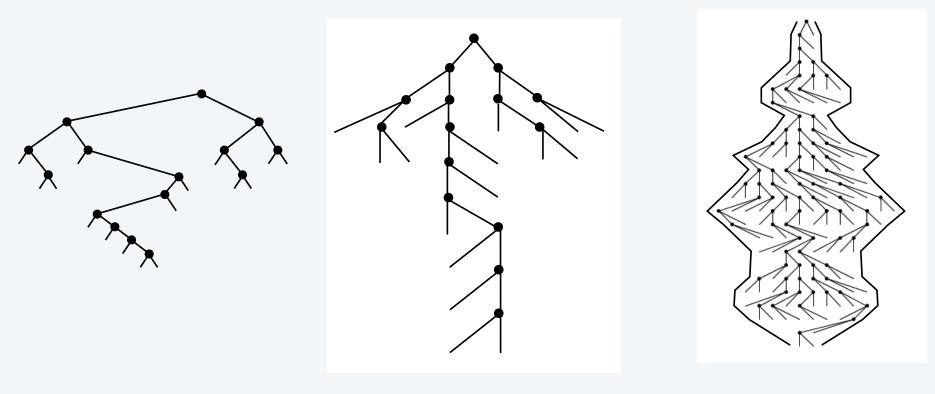
Problem: distracting long edges



Aside: Drawing a binary tree

Approach 2:

- y-coordinate: height minus node depth
- x-coordinate: centered and evenly spaced by level



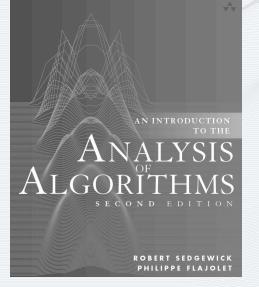
Drawing shows tree profile

Typical random binary tree shapes (400 nodes)

Challenge: characterize analytically

ANALYTIC COMBINATORICS

PART ONE



http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

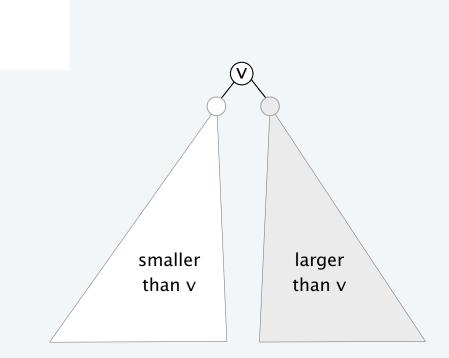
6b.Trees.BSTs

Binary search tree (BST)

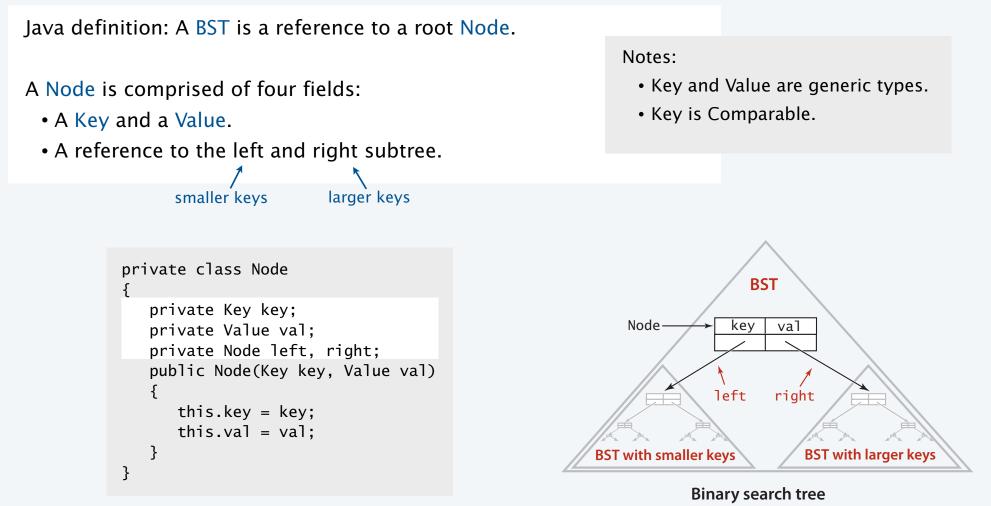
Fundamental data structure in computer science:

- Each node has a key, with comparable values.
- Keys are all distinct.
- Each node's left subtree has smaller keys.
- Each node's right subtree has larger keys.

Section 3.2

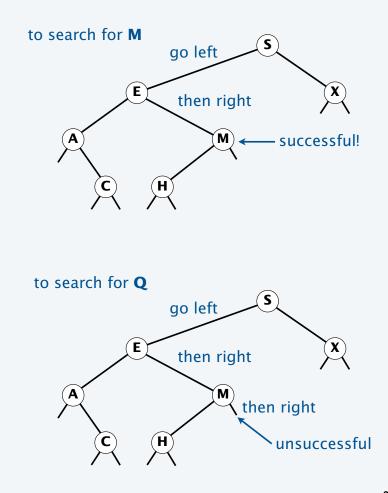


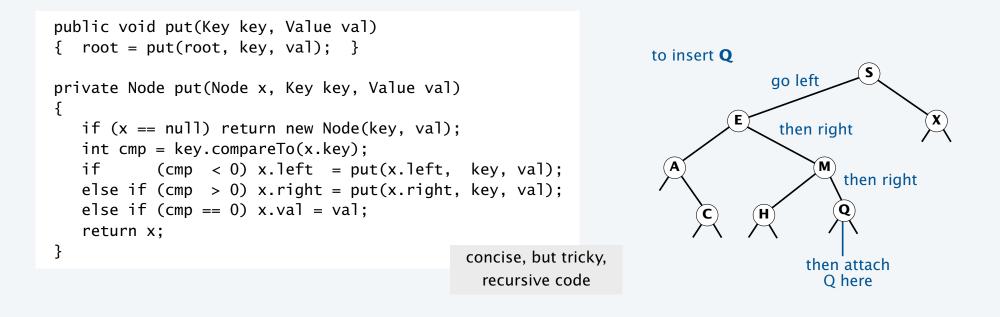
BST representation in Java



BST implementation (search)

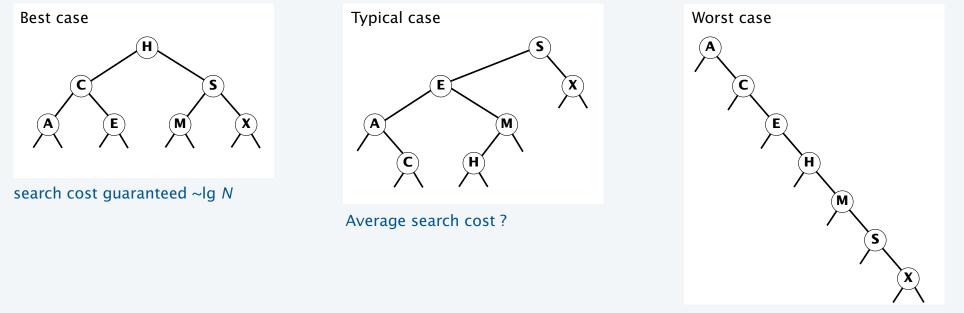
```
public class BST<Key extends Comparable<Key>, Value>
   private Node root;
  private class Node
  { /* see previous slide */ }
  public Value get(Key key)
   {
     Node x = root;
     while (x != null)
      {
        int cmp = key.compareTo(x.key);
        if
             (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
      }
      return null;
   }
   public void put(Key key, Value val)
   { /* see next slide */ }
}
```





Key fact

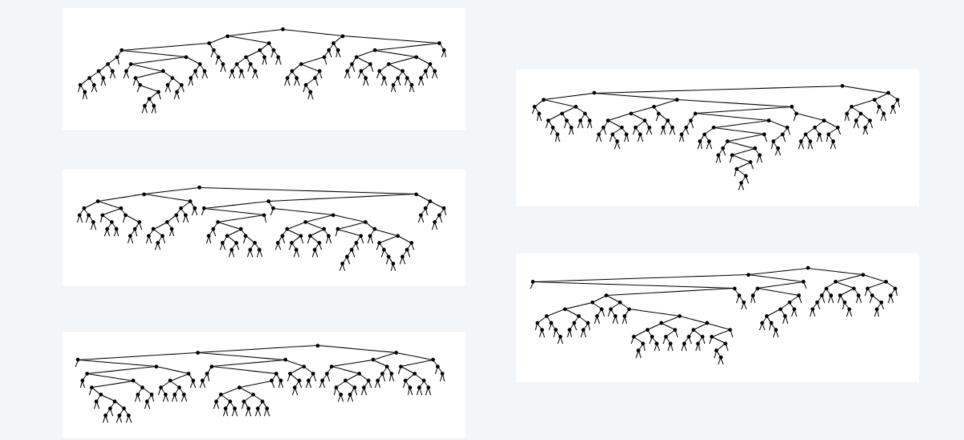
The shape of a BST depends on the order of insertion of the keys.



Average search cost $\sim N/2$ (a problem)

Reasonable model: Analyze BST built from inserting keys in *random* order.

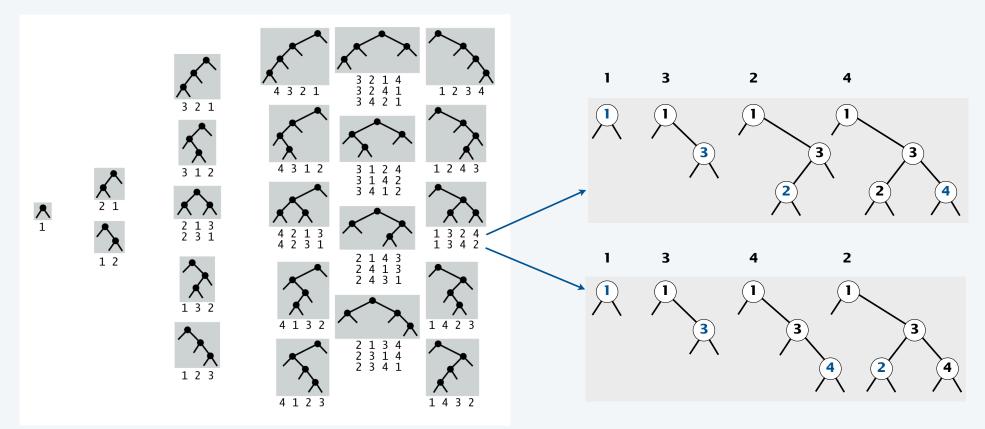
Typical random BSTs (80 nodes)



Challenge: characterize analytically (explain difference from random binary trees)

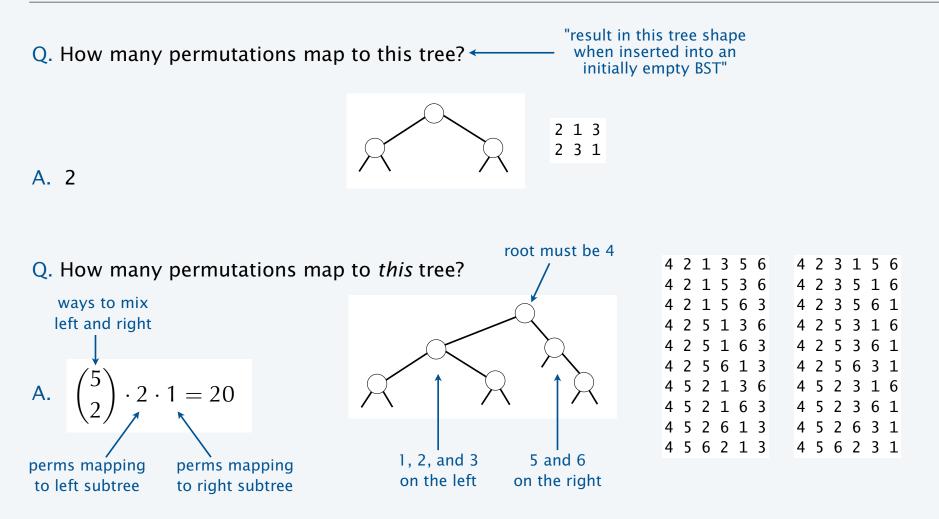
BST shape

is a property of *permutations*, not trees (!)

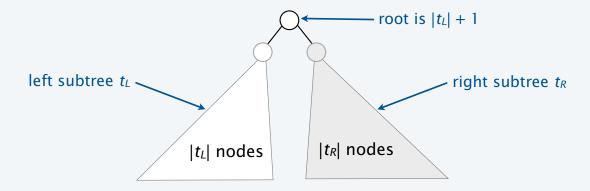


Note: Balanced shapes are more likely.

Mapping permutations to trees via BST insertion



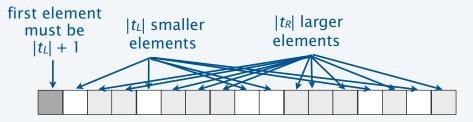
Q. How many permutations map to a general binary tree t?



A. Let P_t be the number of perms that map to t

$$P_t = \begin{pmatrix} |t_L| + |t_R| \\ |t_L| \end{pmatrix} \cdot P_{t_L} \cdot P_{t_R}$$

much, much larger when $t_L \approx t_R$ than when $t_L \ll t_R$ (explains why balanced shapes are more likely)

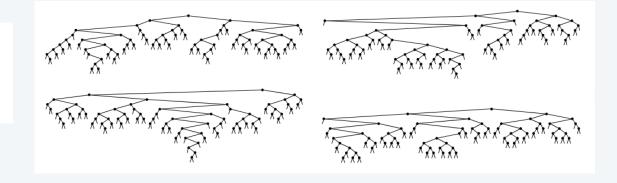


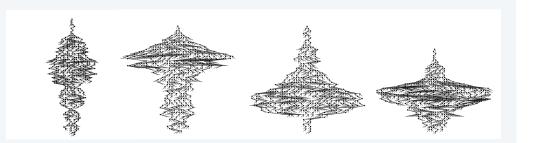
Two binary tree models

that are fundamental (and fundamentally different)

BST model

- Balanced shapes much more likely.
- Probability root is of rank k: 1/N.





Catalan model

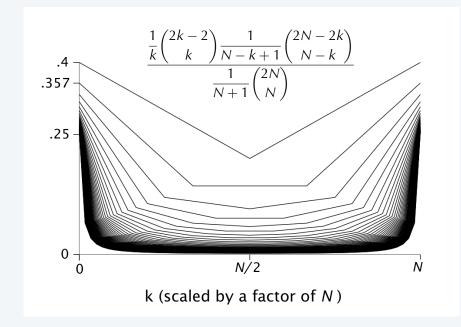
- Each tree shape equally likely.
- Probability root is of rank k:

$$\frac{\frac{1}{k}\binom{2k-2}{k}}{\frac{1}{N-k+1}\binom{2N-2k}{N-k}}$$

$$\frac{\frac{1}{N+1}\binom{2N}{N}}{\frac{1}{N+1}\binom{2N}{N}}$$

Catalan distribution

Probability that the root is of rank k in a randomly-chosen binary tree with N nodes.



```
public static double[][] catalan(int N)
{
   double[] T = new double[N];
   double[][] cat = new double[N-1][];
  T[0] = 1;
  for (int i = 1; i < N; i++)
       T[i] = T[i-1]*(4*i-2)/(i+1);
   cat[0] = new double[1];
   cat[0][0] = 1;
   for (int i = 1; i < N-1; i++)
   {
      cat[i] = new double[i];
      for (int j = 0; j < i; j++)
         cat[i][j] = T[j]*T[i-j-1]/T[i];
   }
   return cat;
}
```

Note: Small subtrees are extremely likely.

Ex. Probability that at least one of the two subtrees is empty: $\sim 1/2$

Aside: Generating random binary trees

```
public class RandomBST
                                                      Note: "rank" field includes external nodes: x.rank = 2*k+1
   private Node root;
                                                        private Node generate(int N, int d)
   private int h;
   private int w;
                                                          Node x = new Node();
   private class Node
                                                          x.N = N; x.depth = d;
                                                          if (h < d) h = d;
   {
                                                          if (N == 0) x.rank = w++; else
      private Node left, right;
      private int N;
                                                          ł
      private int rank, depth;
                                                              int k = // internal rank of root
                                                              x.left = generate(k-1, d+1);
   }
                                                             x.rank = w++;
   public RandomBST(int N)
                                                             x.right = generate (N-k, d+1);
                                                          }
   { root = generate(N, 0); }
                                                           return x;
   private Node generate(int N, int d)
                                                       }
   { // See code at right. } -
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
                                                          random BST: StdRandom.uniform(N)+1
      RandomBST t = new RandomBST(N);
                                                    random binary tree: StdRandom.discrete(cat[N]) + 1;
      t.show();
   }
}
      stay tuned
```

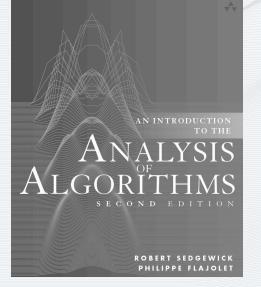
Aside: Drawing binary trees

```
public void show()
{ show(root); }
private double scaleX(Node t)
{ return 1.0*t.rank/(w+1); }
private double scaleY(Node t)
{ return 3.0*(h - t.depth)/(w+1); }
private void show(Node t)
ł
  if (t.N == 0) return;
   show(t.left);
   show(t.right);
   double x = scaleX(t):
   double y = scaleY(t);
   double xl = scaleX(t.left);
   double yl = scaleY(t.left);
   double xr = scaleX(t.right);
   double yr = scaleY(t.right);
   StdDraw.filledCircle(x, y, .005);
   StdDraw.line(x, y, xl, yl);
   StdDraw.line(x, y, xr, yr);
}
```

Exercise: Implement "centered by level" approach.

ANALYTIC COMBINATORICS

PART ONE



http://aofa.cs.princeton.edu

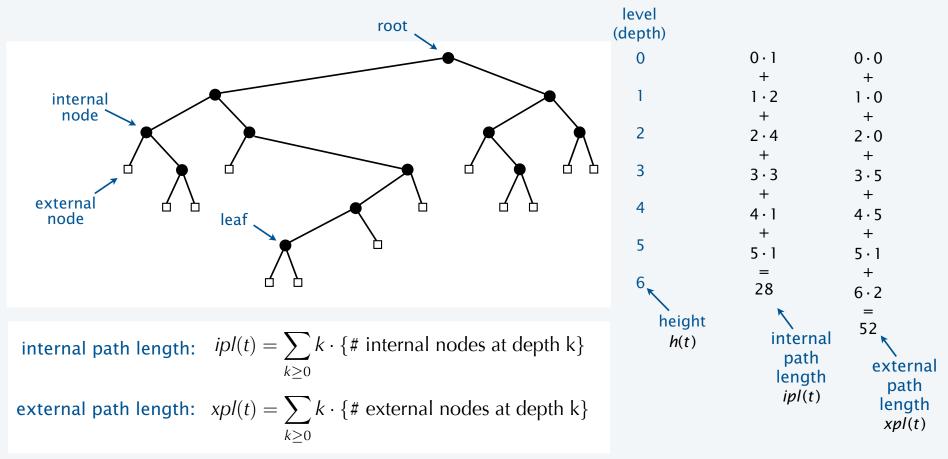
6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6c.Trees.Paths

Path length in binary trees

Definition. A *binary tree* is an external node or an internal node and two binary trees.



32

Path length in binary trees

notation definition	
t	binary tree
<i>t</i>	# internal nodes in t
t	# external nodes in t
t_L and t_R	left and right subtrees of t
ipl(t)	internal path length of t
xpl(t)	external path length of t

recursive relationships

$$|t| = |t_L| + |t_R| + 1$$

$$\boxed{t} = \boxed{t_L} + \boxed{t_R}$$

$$ipl(t) = ipl(t_L) + ipl(t_R) + |t| - 1$$

$$xpl(t) = xpl(t_L) + xpl(t_R) + \boxed{t}$$

Lemma 1. t = |t| + 1*Proof.* Induction.

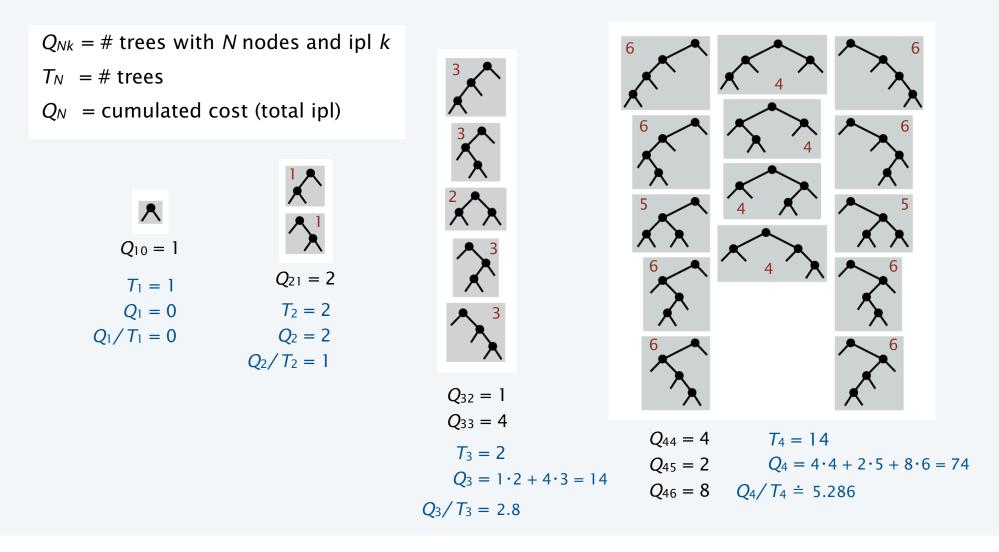
 $\begin{aligned} t &= t_L + t_R \\ &= |t_L| + 1 + |t_R| + 1 \\ &= |t| + 1 \end{aligned}$

Lemma 2. xpl(t) = ipl(t) + 2|t|*Proof.* Induction.

$$xpl(t) = xpl(t_L) + xpl(t_R) + [t]$$

= $ipl(t_L) + 2|t_L| + ipl(t_R) + 2|t_R| + |t| + 1$
= $ipl(t) + 2|t|$

Problem 1: What is the expected path length of a random binary tree?



Average path length in a random binary tree

T is the set of all binary trees.

|t| is the number of internal nodes in t.

ipl(*t*) is the internal path length of *t*.

- T_N is the # of binary trees of size N (Catalan).
- Q_N is the total ipl of all binary trees of size N.

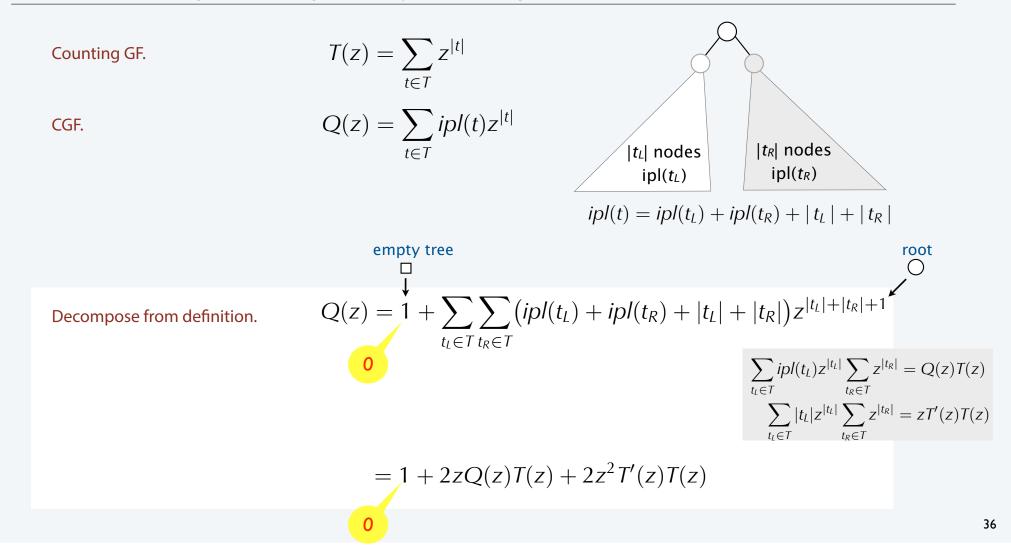
Counting GF.
$$T(z) = \sum_{t \in T} z^{|t|} = \sum_{N \ge 0} T_N z^N = \sum_{N \ge 0} \frac{1}{N+1} {\binom{2N}{N}} z^N \sim \frac{4^N}{\sqrt{\pi N^3}}$$

Cumulative cost GF.
$$Q(z) = \sum_{t \in T} \operatorname{ipl}(t) z^{|t|}$$

Average ipl of a random
N-node binary tree.
$$\frac{[z^N]Q(z)}{[z^N]T(z)} = \frac{[z^N]Q(z)}{T_N}$$

Next: Derive a functional equation for the CGF.

CGF functional equation for path length in binary trees



Expected path length of a random binary tree: full derivation

CGF.

$$Q(z) = \sum_{t \in T} ipl(t)z^{|t|}$$
Decompose from definition.

$$Q(z) = 1 + \sum_{t_L \in T} \sum_{t_R \in T} (ipl(t_L) + ipl(t_R) + |t_L| + |t_R|)z^{|t_L| + |t_R| + 1}$$

$$= 2zT(z)(Q(z) + zT'(z))$$
Solve.

$$Q(z) = \frac{2z^2T(z)T'(z)}{1 - 2zT(z)}$$

$$T(z) = \frac{1 - \sqrt{1 - 4z}}{2z} T_N \sim \frac{4^N}{N\sqrt{\pi N}}$$

$$T'(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T'(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T'(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T(z) = \frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

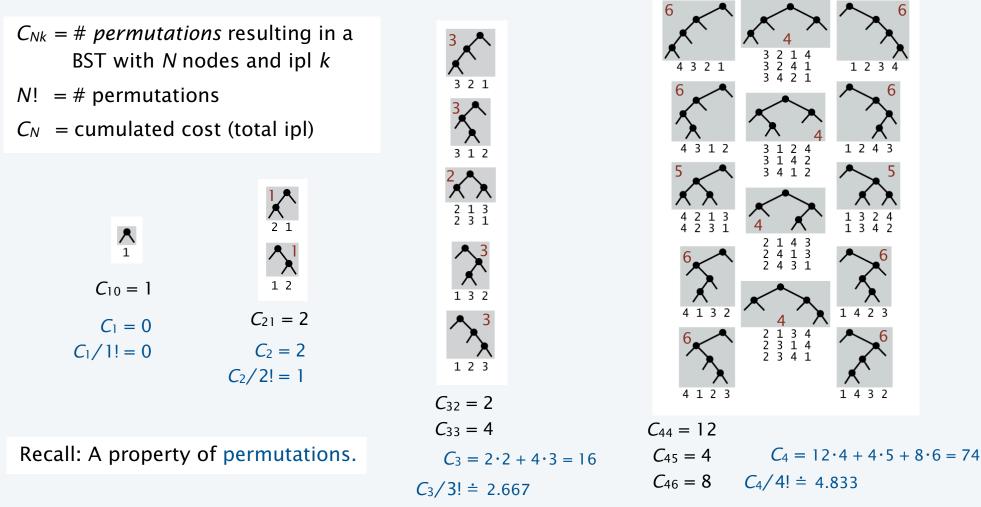
$$T(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

$$T(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$

Problem 2: What is the expected path length of a random BST?



Average path length in a BST built from a random permutation

P is the set of all permutations.

|p| is the length of p.

ipl(p) is the ipl of the BST built from p by inserting into an initially empty tree.

 P_N is the # of permutations of size N(N!).

 C_N is the total ipl of BSTs built from all permutations.

Counting EGF.

$$P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \sum_{N \ge 0} N! \frac{z^N}{N!} = \frac{1}{1-z}$$
Cumulative cost EGF.

$$C(z) = \sum_{p \in P} ipl(p) \frac{z^{|p|}}{|p|!}$$
Expected ipl of a BST built from a random permutation.

$$\frac{N![z^N]C(z)}{[z^N]P(z)} = \frac{N![z^N]C(z)}{N!} = [z^N]C(z) \leftarrow \begin{array}{c} \text{skip a step because counting sequence and EGF normalization are both N!} \end{array}$$

Next: Derive a functional equation for the cumulated cost EGF.

CGF functional equation for path length in BSTs

Cumulative cost EGF.
$$C(z) = \sum_{p \in P} ipl(p) \frac{z^{|p|}}{|p|!}$$
Counting GF.
$$P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \frac{1}{1-z}$$

$$\binom{|p_{l}| + 1}{|p_{l}|} \text{ smaller larger}$$

$$\binom{|p_{l}| + 1}{|p_{l}|} \text{ perms lead to the same tree with } p_{l} + 1 \text{ at the root } p_{l} \text{ nodes on the left } p_{R} \text{ nodes on the right}}$$

$$P(z) = \sum_{p \in P} \sum_{p \in P} \frac{p_{R} \in P}{|p|!} \frac{p_{L}| + 1 \text{ at the root } p_{L} + 1}{|p_{L}| + 1 \text{ at the root } p_{L} \text{ nodes on the left } p_{R} \text{ nodes on the right}}$$

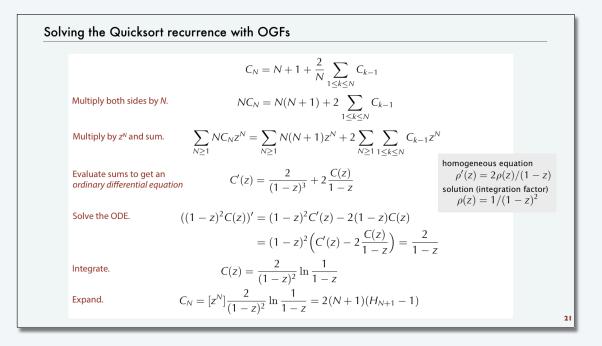
$$P(z) = \sum_{p \in P} \sum_{p \in P} \frac{p_{R} \in P}{|p|!} \frac{p_{L}| + 1 \text{ at the root } p_{L} + 1}{(|p_{L}| + |p_{R}| + 1)!} (ipl(p_{L}) + ipl(p_{R}) + |p_{L}| + |p_{R}|)$$

$$P(z) = \sum_{p \in P} \sum_{p \in P} \frac{z^{|p|}}{|p|!} \frac{z^{|p_{L}|}}{|p_{L}|!} \frac{p_{R}|}{(p_{L}| + |p_{R}| + 1)!} (ipl(p_{L}) + ipl(p_{R}) + |p_{L}| + |p_{R}|)$$

$$P(z) = \sum_{p \in P} \sum_{p \in P} \frac{z^{|p|}}{|p|!} \frac{1}{1-z}$$

$$P'(z) = \sum_{p \in P} \frac{z^{|p|-1}}{(|p|-1)!} \frac{1}{(1-z)^{2}}$$

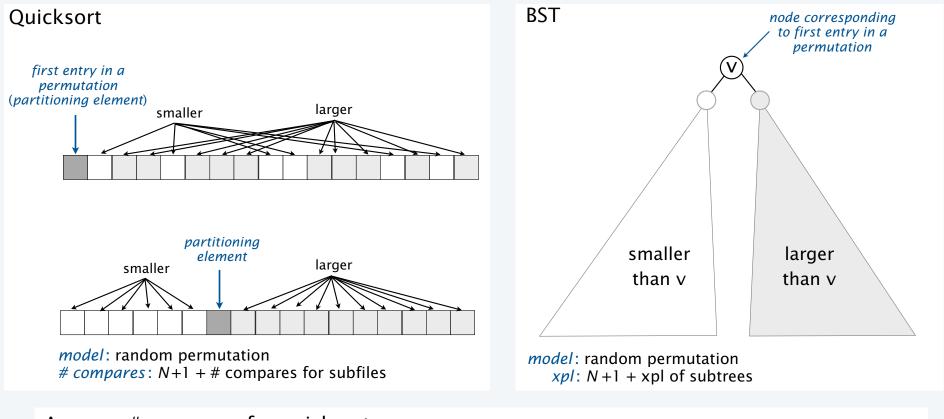
$$C'(z) = \frac{2C(z)}{1-z} + \frac{2z}{(1-z)^3}$$
 Look familiar?



Expected path length in BST built from a random permutation: full derivation

$$CGF. C(z) = \sum_{p \in P} ipl(p) \frac{z^{|p|}}{|p|!}$$
Decompose. $C(z) = \sum_{p_l \in \mathcal{P}} \sum_{p_R \in \mathcal{P}} {\binom{|p_l| + |p_R|}{|p_L|}} \frac{z^{|p_l| + |p_R| + 1}}{(|p_l| + |p_R| + 1)!} (ipl(p_l) + ipl(p_R) + |p_l| + |p_R|)$
Differentiate. $C'(z) = \sum_{p_l \in \mathcal{P}} \sum_{p_R \in \mathcal{P}} \frac{z^{|p_l|}}{|p_L|!} \frac{z^{|p_R|}}{|p_R|!} (ipl(p_l) + ipl(p_R) + |p_L| + |p_R|)$
Simplify. $= 2C(z)P(z) + 2zP'(z)P(z)$
 $= \frac{2C(z)}{1-z} + \frac{2z}{(1-z)^3}$
 $P'(z) = \sum_{p \in \mathcal{P}} \frac{z^{|p|-1}}{(|p|-1)!} = \frac{1}{(1-z)^2}$
Expand. $C_N = 2(N+1)(H_{N+1} - 1) - 2N \sim 2N \ln N$

BST - quicksort bijection

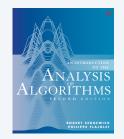


Average # compares for quicksort

- = average external path length of BST *built from a random permutation*
- = average internal path length + 2N

Height and other parameters

Approach works for any "additive parameter" (see text). Height requires a different (much more intricate) approach (see text).

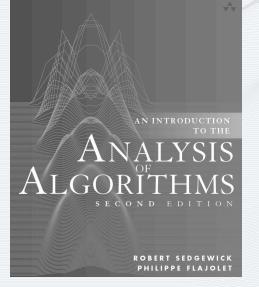


Sumi	mary:

	typical shape	average path length	height
random binary tree		$\sim \sqrt{\pi N}$	$\sim 2\sqrt{\pi N}$
BST built from random permutation	A TAXA A A A A A A A A A A A A A A A A A	$\sim 2 \ln N$	$\sim c \ln N$ $c \doteq 4.3$

ANALYTIC COMBINATORICS

PART ONE



http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

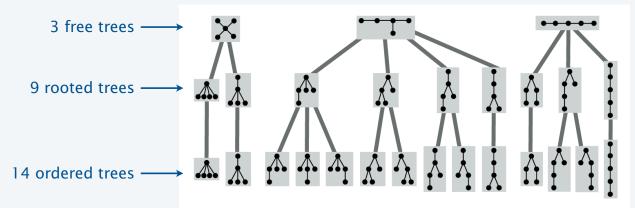
6d.Trees.Other

Other types of trees in combinatorics

Classic tree structures:

- The free tree, an acyclic connected graph.
- The rooted tree, a free tree with a distinguished root node.
- The ordered tree, a rooted tree where the order of the subtrees is significant.

Ex. 5-node trees:

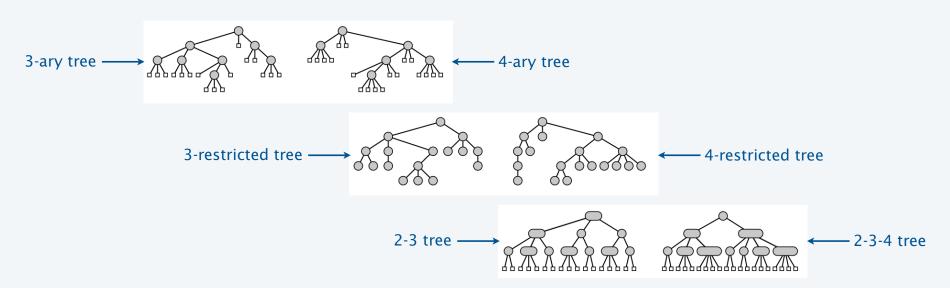


Enumeration? Path length? Stay tuned for Analytic Combinatorics

Other types of trees in algorithmics

Variations on binary trees:

- The *t*-ary tree, where each node has *exactly t* children.
- The *t*-restricted tree, where each node has *at most t* children.
- The 2-3 tree, the method of choice in symbol-table implementations.



Enumeration? Path length? Stay tuned for Analytic Combinatorics

Analytic

Combinatorics

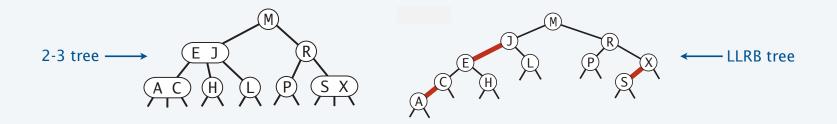
An unsolved problem

Balanced trees are the method of choice for symbol tables

- Same search code as BSTs.
- Slight overhead for insertion.
- Guaranteed height < 2lg*N*.
- Most algorithms use 2-3 or 2-3-4 tree representations.

Algorithms

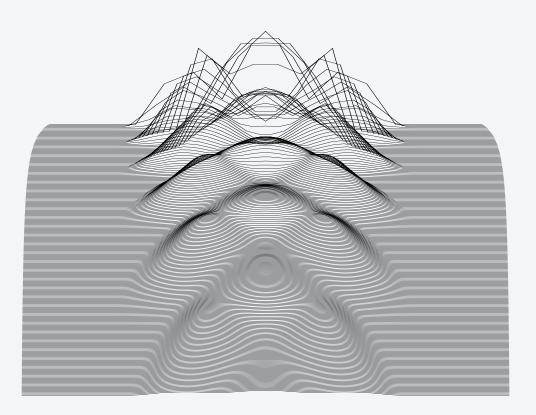
Ex. LLRB (left-leaning red-black) trees.



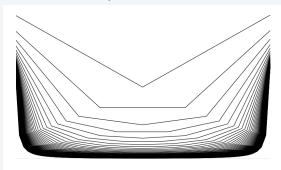
Q. Path length of balanced tree built from a random permutation? <---- a property of permutations, not trees

Balanced tree distribution

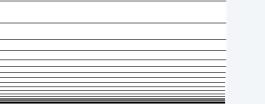
Probability that the root is of rank k in a randomly-chosen AVL tree.



Random binary tree

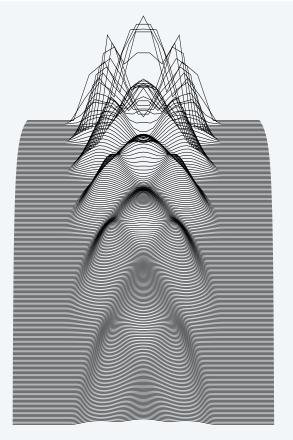


BST built from a random permutation

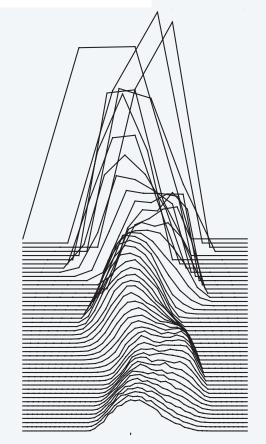


An unsolved problem

Q. Path length of balanced tree built from a random permutation?



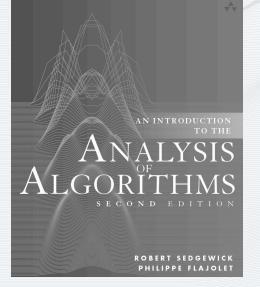
random AVL tree



LLRB tree built from random perm (empirical)

ANALYTIC COMBINATORICS

PART ONE



http://aofa.cs.princeton.edu

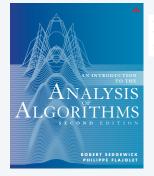
6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees
- Exercises

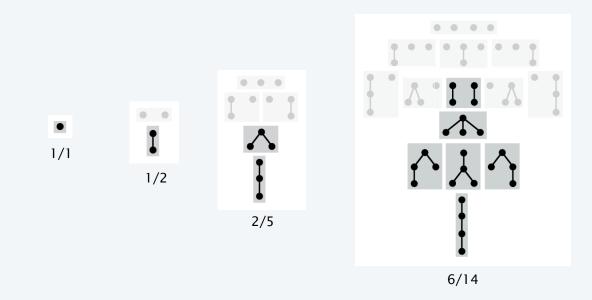
6d.Trees.Other

Exercise 6.6

Tree enumeration via the symbolic method.

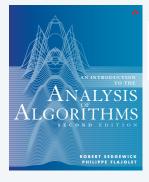


Exercise 6.6 What proportion of the forests with N nodes have no trees consisting of a single node? For N = 1, 2, 3, and 4, the answer is 0, 1/2, 2/5, and 3/7, respectively.

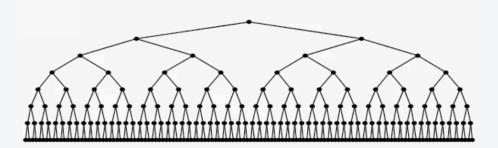


Exercise 6.27

Compute the probability that a BST is perfectly balanced.

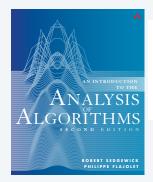


Exercise 6.27 For $N = 2^n - 1$, what is the probability that a perfectly balanced tree structure (all 2^n external nodes on level n) will be built, if all N! key insertion sequences are equally likely?



Exercises 6.43

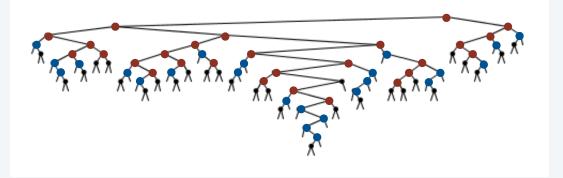
Parameters for BSTs built from a random permutation.



Answer these questions for BSTs built from a random permutation.

Exercise 5.15 Find the average number of internal nodes in a binary tree of size n with both children internal. \bullet

Exercise 5.16 Find the average number of internal nodes in a binary tree of size n with one child internal and one child external. \bullet



Assignments for next lecture

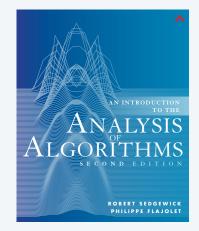
1. Read pages 257-344 in text.

2. Run experiments to validate mathematical results.

Experiment 1. Generate 1000 random permutations for N = 100, 1000, and 10,000 and compare the average path length and height of the generated trees with the values predicted by analysis.

Experiment 2. *Extra credit.* Do the same for random binary trees.

3. Write up solutions to Exercises 6.6, 6.27, and 6.43.



ANALYTIC COMBINATORICS PART ONE

AN INTRODUCTION TO THE ANALYSIS OF ACCONDEDITION SECONDEDITION

http://aofa.cs.princeton.edu