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Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Features:
 Analysis begins with formal combinatorial constructions. Analytic
. . . . Combinatorics
« The generating function is the central object of study.
» Transfer theorems can immediately provide results from formal descriptions.
e Results extend, in principle, to any desired precision on the standard scale.
« Variations on fundamental constructions are easily handled.

Philippe Flajolet and
Robert Sedgewick

generating
' ' symbolic . analytic coefficient
combinatorial < function >
constructions transfer . transfer asymptotics
equation
theorem theorem

the “symbolic method”



Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with N nodes?

T=E+ZxTxT

combinatorial construction

T(z) =1+ 2T(z)?

GF equation

aN
Ty ~
N>
coefficient

asymptotics
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The symbolic method

is an approach for translating combinatorial constructions to GF equations

Examples
 Define a class of combinatorial objects. Py 8 &
 Define a notion of size. 171
« Define a GF whose coefficients count objects of the same size. A@)

» Define operations suitable for constructive definitions of objects. AXB
« Develop translations from constructions to operations on GFs. A(2)B(2)
Formal basis: Building blocks
« A combinatorial class is a set of objects and a size function. notation denotes  contains
« An atom is an object of size 1. 7 aé?al’?;c S —
* An neutral object is an atom of size 0.
« A combinatorial construction uses the union, product, and 2 ngll;tsr:ll r:)ebljctercil

sequence operations to define a class in terms of atoms embt
and other classes. ¢ Y nothing



Unlabelled class example 1: natural numbers

Def. A natural number is a set (or a sequence) of atoms.

LH=1 L =1 =1 Is =1 Is =1

unary notation

counting sequence

>

N>0

1
1—7z




Unlabelled class example 2: bitstrings

Def. A bitstring is a sequence of 0 or 1 bits.

0000
0001
0010
0011
000 0100
001 0101 counting sequence OGF
00 010 0110
0 01 011 0111 B — oN 1
1 10 100 1000 N 1-27
we aea 300 e
B2=4 111 1011 EZf&NZEZQ@N:1JZZ
1100 N>0 N>0
B:s=8 1101
1110
1111

Bsa= 16



Unlabelled class example 3: binary trees

Def. A binary tree is empty or a sequence of a node and two binary trees

Ta=14

counting sequence OGF

TN+I\N/ 2z

" 1 (2/\/) 1(1—\/@)

Catalan numbers (see Lecture 3)

T(z) =14 zT(2)*



Combinatorial constructions for unlabelled classes

construction notation semantics
disjoint union A + B disjoint copies of objects from A and B
dered pai ¢ . f obi A and B are
Cartesian product A X B ordered pairs of copies of objects, combinatorial classes
one from A and one from B of unlabelled objects
sequence SEQ(A) sequences of objects from A
Ex1. (o0 +01) x (101 4 110 4 111 ) = 00101 00110 00111 01101 01111
Ex2. o x SEQ(e) = o oo eee ecee cccee coccee coccooe

Ex3. o x e XEA:'= E/?\j “unlabelled" ?? Stay tuned.



The symbolic method for unlabelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of unlabelled objects with OGFs A(z) and B(z). Then

construction notation semantics OGF

disjoint union A+B disjoint copies of objects from A and B A(z) + B(z)

Cartesian product A X B ordered pairs of copies of objects, A(Z)B(Z)

one from A and one from B

sequence SEQ(A) sequences of objects from A



Proofs of transfers

are immediate from GF counting

A+ B
Z A = Zzlal + ZZIBI = A(2) + B(2)
~EA+B Q€A BEB
AXB

N = NS el (Z Z|ar) (Z Z\m) — A(2)B

YEAX B a€A BEB a€cA peB

SEQ(A)
SEQA)=e+A+A> + A+ A 4.

14+A)+AZ)? +AE)? + A + ...

(2)

1

1 —A(2)



Symbolic method: binary trees

How many binary trees with N nodes?

Class T, the class of all binary trees

Size  |t|, the number of internal nodes in t

S T(z) = Zz'” = Z Tz

teT N=0

Construction

OGF equation

T(z) =14 zT(2)*

Atoms type class size  GF
external node /0 0 ]
internal node 7 1 Z

“a binary tree is an external node
or an internal node connected to
two binary trees”

IT=/0+T xZexT




Symbolic method: binary trees

How many binary trees with N external nodes?

Class T, the class of all binary trees

Atoms type class  size

internal node

GF
_ external node /0 @ @
Size , the number of external nodes in t
HOIO

OCGF

Construction

OGF equation

TH(2) = Z -

“a binary tree is an external node
or an internal node connected to
two binary trees”

IT=/0+T xZexT

T(z) =2+ T (2)?

T=(2) = zT(2)

1 /(2N —2

N1~ N—1 .

zYT—(z) = |z T(z) = — same as # binary trees

[ ] ( ) [ ] ( ) N ( N —1 ) with N-1 internal nodes



Symbolic method: binary strings

Warmup: How many binary strings with N bits?

Atoms

Class B, the class of all binary strings

Size  |b|, the number of bits in b

ocF  Bz)=>) _ZPl =" BN

beB

Construction

OGF equation

N>0

B = SEQ(Zo + Z1)

type

0 bit

1 bit

class size GF

“a binary string is a sequence
of 0 bits and 1 bits”



Symbolic method: binary strings (alternate)

Warmup: How many binary strings with N bits?

: : Atoms
Class B, the class of all binary strings
Size  |b|, the number of bits in b
ocF  Bz)=>) _ZPl =" BN
beB N>0
Construction B=E+ (Zo+Z)xB
OGF equation B(z) =1+ 2zB(z)
B(z) = —

. /) =

Solution 1 - 22

type class  size GF
0 bit ZO 1 Z
1 bit / 1 | z

“a binary string is empty or
a bit followed by a binary string”



Symbolic method: binary strings with restrictions

Ex. How many N-bit binary strings have no two consecutive 0s?

01011

01010

01101

8123 01110

011 o1l 01111

01 010 10101

2 10 101 181% 10110
11

. ) 110 e 10111

Ti=2 111 11011

To=3 1110 1010

T3=5 1111 11101

Ta=8 11110

11111

Ts=13

Stay tuned for general treatment (Chapter 8)



Symbolic method: binary strings with restrictions

Ex. How many N-bit binary strings have no two consecutive 0s?

Atoms -
Class  Boo, the class of binary strings with no 00 type auss | siee | @y
0 bit ZO 1 V4
Size  |b|, the number of bits in b
1 bit Z1 ] z

ocF  Boo(z) =) _ 2"

b&Boo

. “a binary string with no 00 is either
Construction Boo = £+ Zo + (Z1 +Zo % Z1) X Boo empty Oyr 0 orgi,t is 1 or 01 followed

by a binary string with no 00”

OGF equation Boo(z) =14z + (z + 2°)Boo(2)
1
solution Boo(z) = . ;__ZZZ
[ZN]Boo(2) = Fn + Fng1 = Fnao 1,2,58,13,... «

3, 17


Bob Sedgewick
3,


Symbolic method: many, many examples to follow

How many ... with ... ?

Class Atoms type class  size GF
Size
OGF
Construction “a ... is either”...
or ... and ...
OGF equation A

Combinatorics

. ANALYSIS
solution ALGORITHMS

Philippe Flajolet and
Robert Sedgewick
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Labelled combinatorial classes

have objects composed of N atoms, labelled with the integers 1 through N.

Ex. Different unlabelled objects

[l AN

Ex. Different labelled objects

21



Labelled class example 1: urns

Def. An urnis a set of labelled atoms.

©,
o B B B
U =1 Uz =1 Us=1 Us =1

counting sequence

EGF

22



Labelled class example 2: permutations

Def. A permutation is a sequence of labelled atoms.

LOO® OO®G
OOO® O®G
OI010/080/0/010
eololloeloojolelo
DOE OOOW OVO®W® counting sequence

OO0 000 OOO® OO Py — N
~ 00 000 0000 OO0
rel OO0 OOOG OREO "

HOO OO0 OO®® XN T2

po2 QOO OOEOO
ololelofelolele
ololelojolelele

Ps=06




Labelled class example 3: cycles

Def. A cycle is a cyclic sequence of labelled atoms

)

G=1

S
£

G=2

&
£ &
oY NG
o ©

counting sequence EGF

1

CN:(/\/—1)' 1111_2

(N=1)N N 1
2N SN
N>T N>T

24



Star product operation

Analog to Cartesian product requires relabelling in all consistent ways.

ExXl. Q*xOQ® = QOGO OOG® OOO® OOLOG

NE

Q6D o
Q6D - o DED e
D* 6D - & SED 0 £ &

O @ & b



Combinatorial constructions for labelled classes

construction

disjoint union

labelled product

sequence

set

cycle

notation

A+ B

A B

SEQ(A)

SET(A)

CYC(A)

semantics

disjoint copies of objects from A and B

ordered pairs of copies of objects,
one from A and one from B

sequences of objects from A

sets of objects from A

cyclic sequences of objects from A

A and B are
combinatorial classes
of labelled objects

26



The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction
disjoint union

labelled product

sequence

set

cycle

notation

A+ B
A% B
SEQ(A)
SEQ(A)

SETK(A)
SET(A)
CYCk(A)

CYC(A)

semantics

disjoint copies of objects from A and B

ordered pairs of copies of objects,

one from A and one from B

k- sequences of objects from A

sequences of objects from A

k-sets of objects from A
sets of objects from A

k-cycles of objects from A

cycles of objects from A

EGF

27



The symbolic method for labelled classes: basic constructions

class

urns

cycles

permutations

construction

U= SET(Z)

C=CYC(2)

P=SEQ(Z)

P=E+Z%P

EGF

counting
sequence

Py = N!

construction notation

disjoint
union

labelled

product

sequence

set

cycle

A+ B

A% B

SEQk(A)

SEQ(A)

SETk(A)
SET(A)

CYCk(A)

CYC(A)

EGF

A(z) + B(z)

A(2)B(2)

A(2)"
1

1—A(z)

A(2)K k!
()

A(2)k /k
1

n——
1’11_

A(2)

28



Proofs of transfers

are immediate from GF counting

A+ B
Z Zh/l Z Z|a| Z Z|B| A( ) B( )
Sl el T 4181
Ax B
el | !+5\) |48
y4 o « 7 o (
> a2 s (e (S

Notation. We write A2 for A % A, A3 for A % A % A, etc.

(X5

BeB

18
61!

29



Proofs of transfers

are immediate from GF counting

, bl . zN . zN
A(z)k = Z{#k—sequences of size /\/}m = Z k{#k-cycles of size /\/}m = Z k!'{#k-sets of size /\/}m
N>0 N>0 N>0
k k
A</f) = Z{#k—cycles of size N}ZNI\: A(kz') = Z{#k—sets of size /\/}7\;\:
N>0 N>0
class construction EGF
k-sequence SEQUA) A(z)
1
sequence  SEQA) = SEQu(A) + SEQi(A) + SEQz(A) + . . . T+ A@Z) +A@) +A@) +.. = 7= A7)
A(2)*
k-cycle CYCk(A) p
2 3
cycle CYCA) = CYCo(A) + CYCI(A) + CYCA(A) +. .. 14+ Al2) n Al2) n A(Z) b —fp !
1 2 3 1T—A@2)
k
k-set SETk(A) A(kz')
2 3
set SETWA) = SETo(A) + SETi(A) + SET2(A) + . . . A2 AR AR e



Labelled class example 4: sets of cycles

Q. How many sets of cycles of labelled atoms?

000 ®®® @
0 ma e
N o BeEs
® . @@@ 042 @
p® 2 é@% 00 94 5 4
5\@ @@@ ooe @ e

ollo col® @& @éf\@

P3=6
P4 =24

31



Symbolic method: sets of cycles

How many sets of cycles of length N ?

Class ~ P*, the class of all sets of cycles of atoms 10" type duss | shem| GF

labelled atom Z 1 z
Size  |p|, the number of atoms in p

Pl
EGF P(2) = Zp‘, =) ’D/\/

pepr* N>0
Construction P* = SET(CYC(Z))
OGF equation P*(z) = ex (m 1 ) _
ST T2

Counting sequence Py, = N[ZNP*(2) = N!



Aside: A combinatorial bijection

A permutation is a set of cycles.

Standard representation

10 12 13 14 15 16

@@@\G@@@@

Set of cycles representation

£ e g

33



Derangements

N people go to the opera and leave their hats on a shelf in the cloakroom.
When leaving, they each grab a hat at random.

Q. What is the probability that nobody gets their own hat ?

Definition. A derangement is a permutation with no singleton cycles

34



Derangements (various versions)

A group of N people go to the opera and leave their hats in the cloakroom.
When leaving, they each grab a hat at random.

Q. What is the probability that nobody gets their own hat ?

A professor returns exams to N students by passing them out at random.

Q. What is the probability that nobody gets their own exam ?

A group of N sailors go ashore for revelry that leads to a state of inebriation.

When returning, they each end up sleeping in a random cabin.

Q. What is the probability that nobody sleeps in their own cabin ?

A group of N students who live in single rooms go to a party that leads to a
state of inebriation. When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room ?

35



Derangements

are permutations with no singleton cycles.

SIS

sicle

Ds=9

g

36



Symbolic method: derangements

How many derangements of length N ?

Class D, the class of all derangements Atom type 9uss | sz | GF
labelled atom Z 1 V4
Size  |p|, the number of atoms in p
|d| N
z z
EGF - D@)=) 1m =2 Dnyg
deD N>0
: . “‘Derangements are permutations
Construction D= SET(CYC>1 (Z)) with no singleton cycles"
) 2 3 4 1 e ”?
OGF equation D(z) = €* [2+2° 347 [4+... = exp(ln 1 — Z) =3
— 7 — 7
P N
_ N D . D/\/ . (—1) Alternate derivation
Expansion [Z ] (Z) =Nl Z &l ~ Set(Z)«D =P

/ 0<k<N
probability that a random T

permutation is a derangement

\ e'D(z) = - 1_2

see “Asymptotics” lecture

simple convolution

37



Derangements

A group of N students who live in single rooms go to a party that leads to a
state of inebriation. When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room ?

A. 15 = 0.36788

38



Derangements

A group of N graduating seniors each throw their hats in the air
and each catch a random hat.

Q. What is the probability that nobody gets their own hat back ?

A. 15 = 0.36788

39



Generalized derangements

In the hats-in-the-air scenario, a student can get her hat back by "following the cycle".

\

e

12 13 14 15 16

@@@@@ 0 (8) (29 (94

Q. What is the probability that all cycles are of length > M?

Q

40



Symbolic method: generalized derangements

How many permutations of length N have no cycles of length < M?

_ Atom
Class Dw, the class of all generalized derangements
Size |d|, the number of atoms in d
| N
EGF Du(z) = ) e ZDMNM
deDy N>0
Construction Dy = SET(CYCsm(2))
M1 M2 1
OGF equation Dy(z) = e Tamz T = exp(ln —
22 Z3 ZM
e ‘T T T3 T M
N 1—2z

Expansion DyNn = 7?7 M-way convolution (stay tuned)

type

labelled atom

—z—-7*/2

class size GF

Z 1 b4

— ... =2 /M)

41
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Generating coefficient asymptotics

are often immediately derived via general "analytic" transfer theorems.

Example 1. Taylor's theorem

Theorem. If f(z) has N derivatives, then [ ZN]f(2) = f(N)(0)/N!

Example 2. Rational functions transfer theorem (see "Asymptotics” lecture)

Theorem. If f(2) and g(2) are polynomials, then

[Zn]@ _ pf(/p)
g(z) g (B)

where 1/B is the largest root of g (provided that it has multiplicity 1).

ﬁn see “Asymptotics”
lecture for general case

Example 3. Radius-of-convergence transfer theorem
Most are based on

[see next slide] complex asymptotics.

Stay tuned for Part 2

Analytic
Combinatorics

44



Radius-of-convergence transfer theorem

Theorem. If f(2) has radius of convergence >1 with f(1) # 0, then

2l ) (M) e

(1—2)° n T(a)
foranyrealx ¢ 0, -1, -2, ... | ‘
convolution, standard asymptotics
fi+fa+...+fa~f() with generalized

binomial coefficient

Corollary. If f(2) has radius of convergence >p with f(p) # 0, then

Zn f<Z) ~ f(p) nna—1
a2 T T’

forany real « ¢ 0, -1, -2, ...

Gamma function
(generalized factorial)

I'(z) = / e ldt
0

MNa+1)=al(a)

T(N+1)=N!
T(1) =1
I'(1/2) ==

45



Radius-of-convergence transfer theorem: applications

Corollary. If f(2) has radius of convergence >p with f(p) # 0, then
]
fi fi
[Zn] (Z) ~ (10) pnna—1
(1—z/p)* T

forany real « ¢ 0, -1, -2, ...

Ex 1: Catalan T(z) = —(1 =1 —42)

2z p=1/4 a=-1/2 flz)=-1/2
4N T(—1/2) = —2T(1/2) = —2
N7 ~ (-1/2) = ~20(1/2) = -2V
VN3
Ex 2: Derangements e—2=72°/2..=2"/M
Dm(z) = 1
o Z 2 M
N' p= 1 a =1 f(Z) — 777 /2...—72"/M

46


Bob Sedgewick
  n

Bob Sedgewick
−


Transfer theorems based on complex asymptotics

provide universal laws of sweeping generality

Analytic
Combinatorics

RobertSeonick

Example: Context-free constructions

A system of combinatorial constructions transfers to a system of GF equations

< Gop>= OPO(< Gy >, <Gy >,...,< G >) e Co(Z) = Fo(CO(Z),C1 (Z)7 .. .,Ct(Z))
<G >=0Pi(< Gy >< Gy >,...,.< Gy >) method S G1(z) = F1(Go(2),G1(2), ..., G(2))

<Gy >=0P(< Gy > <Gy >,....,< G >) Gi(z) = Fi(Go(2),G1(2),...,G(2))

that reduces to a single GF equation that has an explicit solution

Go(z) = F(Co(2), G1(2), ..., Gi(2)) » G(z) ~c—av/1—bz
Drmota-Lalley-Woods
theorem l singularity analysis
that transfers to a N a BN I
Stay tuned for many more (in Part 2). simple asymptotic form  ~N ™ 57 E

47
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Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with N nodes?

1 N
T=E+ZxTxT '—)T(z)z—(1—\/1—42) > TNN—4
27 3
N
combinatorial construction GF
coefficient

asymptotics



Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with N nodes?

N
T=E+ZxTxT —m s T(2)=1+2T(z) > TNN_4
N>
combinatorial construction GF equation
coefficient

Note: With complex asymptotics, we
can transfer directly from GF equation
(no need to solve it). See Part 2.

asymptotics



Old vs. New: Two ways to count binary trees

Old

Recurrence > GF

Solving the Catalan recurrence with GFs

Recurrence that holds for all N.

Multiply by z¥and sum.

Switch order of summation

Change N to N+k+1

Distribute.

Tn= Z TkTn-1-k + N

0<k<N
T(z) = ZTNZN = Z Z
N>0 N>00<k<N
T2)=1+3. 3 TiTnas
k>0 N>k
T2) =143 > Tt
kz() N>0
T(z) =1 +Z<Z Tkzk) (Z
k>0 N>(

T(z) =1+ 2T(2)*

New

L

Solving the Catalan recurrence with GFs (continu--*

Functional GF equation.

Solve with quadratic formula.

Expand via binomial theorem.

Set coefficients equal

Expand via definition.

Distribute (—2)¥ among factors.

Substitute (2/1)(4/2)(6/3)... for 2N.

T(z)=1+
2T(2) = 2
)

1
zT(Z):—E
]

Tn=—3
-1
)
1.3
=1
TONA
-1
=

T=E+ZxTxT

Expand GF

Inclass exercise

Asymptotics

1
Given Stirling’s approximation InN! = NInN — N+ Inv2zaN + O(N)

2N
Develop an asymptotic approximation for ( N) to O(1/N) (relative error)

(2/\/]\/) = exp(In(2N!) — 2In N!)

= exp(2NIn(2N) — 2N + In V4zN + O(1/N)

—2(NIn(N) = N+ Inv2aN + O(1/N))

=exp(2NIn2 — InvVaN + O(1/N))

4N 1
= \/m“ + O(N))

) In V4N — 2Inv2aN = In2 — 2Inv2 — InVaN

Ex.

= —InvVaN
ZN) 1
N vaN

In ~

VN3

AN

52



Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many generalized derangements?

Dy = SET(CYCspi(2))

o/

e

—z—72/2..—7"/M

combinatorial construction

1 -2z

GF equation

N!

~n ————

eHm

coefficient
asymptotics

53



A standard paradigm for analytic combinatorics

Fundamental constructs
selementary or trivial
e confirm intuition

Compound constructs

— 0°O-
*many possibilities o)
O
«classical combinatorial objects . 05

sexpose underlying structure

OO

Variations Q
O

sunlimited possibilities

@

* not easily analyzed otherwise OO0




Combinatorial parameters

are handled as two counting problems via cumulated costs.

Ex: How many leaves in a random binary tree?

1. Count trees

T=E+ZxTxT

2. Count leaves in all trees

T=E+ZxTxT

V4

%ﬁ%ﬁﬁ“

— M= g

Symbolic method works for BGFs (see text)

3. Divide C

Tn

N
4

55



Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Features:
 Analysis begins with formal combinatorial constructions. Analytic
. . . . Combinatorics
« The generating function is the central object of study.
» Transfer theorems can immediately provide results from formal descriptions.
e Results extend, in principle, to any desired precision on the standard scale.
« Variations on fundamental constructions are easily handled.

Philippe Flajolet and
Robert Sedgewick

generating
' ' symbolic . analytic coefficient
combinatorial < function >
constructions transfer . transfer asymptotics
equation
theorem theorem

the “symbolic method”



Stay tuned

for many applications of analytic combinatorics and applications to the analysis of algorithms

Trees

Bitstrings

Permutations

Mappings

10111110100101001100111000100111110110110100000111100001100111011101111101011000
11010010100011110100111100110100111011010111110000010110111001101000000111001110
11101110101100111010111001101000011000111001010111110011001000011001000101010010
10111000011011000110011101110011011011110111110011101011000011001100101000000110
10101100111010001101101110110010010110100101001101111100110000001111101000001111
10000010011000001100011000100001111001110011110000011001111110011011000100100111
10001010101110001110101100000110000011101010100010110001001101111110011110110010
00111011001011100100001100001001111010010011001100001100111010011010000101000111
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Exercise 5.1

Practice with counting bitstrings.

Exercise 5.1 How many bitstrings of length /N have no 000?

LY
ALGORITHMS
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Exercise 5.3

Practice with counting trees.

AN INTRODUCTIC
TO

ANALYSIS
e

Exercise 5.3 Let U be the set of binary trees with the size of a tree defined to be the
total number of nodes (internal plus external), so that the generating function for its
counting sequence is U(z) = z + 2% + 225 + 527 + 142% + ... . Derive an explicit
expression for U(2).
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Exercise 5.7

Practice with counting permutations.

Exercise 5.7 Derive an EGF for the number of permutations whose cycles are all of
odd length.
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Exercises 5.15 and 5.16

Practice with tree parameters.

N INTRODUCTI!
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Exercise 5.15 Find the average number of internal nodes in a binary tree of size n
with both children internal. ®

Exercise 5.16 Find the average number of internal nodes in a binary tree of size n
with one child internal and one child external. ®
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Assignments for next lecture

1. Read pages 219-255 in text.

2. Write up solutions to Exercises 5.1, 5.3, 5.7, 5.15, and 5.16.
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