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Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures. 
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Features: 
• Analysis begins with formal combinatorial constructions.
• The generating function is the central object of study.
• Transfer theorems can immediately provide results from formal descriptions.

• Results extend, in principle, to any desired precision on the standard scale.
• Variations on fundamental constructions are easily handled.

combinatorial

constructions

generating

function

equation

symbolic

transfer
theorem

coefficient

asymptotics

analytic

transfer
theorem

the “symbolic method”



Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures. 
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Ex: How many binary trees with N nodes?

T = E + Z × T × T

combinatorial construction

                            ;(a) = � + a;(a)�

GF equation

                  
;5 � �5�

�5�

coefficient
asymptotics
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The symbolic method
is an approach for translating combinatorial constructions to GF equations
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• Define a class of combinatorial objects.

• Define a notion of size.

• Define a GF whose coefficients count objects of the same size.

• Define operations suitable for constructive definitions of objects.

• Develop translations from constructions to operations on GFs.

Formal basis: 

• A combinatorial class is a set of objects and a size function.

• An atom is an object of size 1.  

• An neutral object is an atom of size 0.

• A combinatorial construction uses the union, product, and 
sequence operations to define a class in terms of atoms 
and other classes. 

Building blocksBuilding blocksBuilding blocks

notation denotes contains

Z atomic 
class an atom

E neutral 
class

neutral 
object

Φ empty 
class nothing

Examples

A, B, Z

| b |

A(z)

A × B

A(z)B(z)



Unlabelled class example 1: natural numbers
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Def. A natural number is a set (or a sequence) of atoms.

counting sequence OGF

I1 = 1 I2 = 1 I3 = 1 I4 = 1

●● ●●●● ●●●● 05 = � �
� � a

�

5��

a5 =
�

� � a

I5 = 1

●●●●●

unary notation



Unlabelled class example 2: bitstrings
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Def. A bitstring is a sequence of 0 or 1 bits.

counting sequence OGF

B2 = 4

B4 = 16

B0 = 1 B1 = 2

B3 = 8

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0
0 1
1 0
1 1

0
1 

�

5��

�5a5 =
�

5��

(�a)5 =
�

� � �a

�
� � �a

)5 = �5



Unlabelled class example 3: binary trees
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T1 = 1

T2 = 2

T3 = 5

T4 = 14

Def. A binary tree is empty or a sequence of a node and two binary trees

counting sequence OGF

;5 =
�

5+ �

�
�5
5

�
�
�a

(� �
�
� � �a)

;(a) = � + a;(a)�
Catalan numbers (see Lecture 3)



Combinatorial constructions for unlabelled classes 
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construction notation semantics

disjoint union A + B disjoint copies of objects from A and B

Cartesian product A × B ordered pairs of copies of objects,
one from A and one from B

sequence SEQ ( A ) sequences of objects from A

Ex 1. 0 0 1 0 1 0 1 1 1 1(   +   ) × (    +    +    ) =0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1

Ex 2. ● × SEQ(●) = ● ●● ●●● ●●●● ●●●●● ●●●●●● ●●●●●●● ...

Ex 3. □ × ● × ● =  ●

□ □
●□ □ □ "unlabelled" ??  Stay tuned.

A and B are 
combinatorial classes 
of unlabelled objects



The symbolic method for unlabelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of unlabelled objects with OGFs A(z) and B(z). Then

10

construction notation semantics OGF

disjoint union A + B disjoint copies of objects from A and B

Cartesian product A × B ordered pairs of copies of objects,
one from A and one from B

sequence SEQ ( A ) sequences of objects from A

((a) + )(a)

((a))(a)

�
� � ((a)



Proofs of transfers
are immediate from GF counting
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�+ ((a) + ((a)� + ((a)� + ((a)� + . . . =
�

�− ((a)

SEQ ( A )

A × B

A + B �

��(+)

a|�| =
�

��(
a|�| +

�

��)
a|�| = ((a) + )(a)

�

��(� )

a|�| =
�

��(

�

��)
a|�|+|�| =

��

��(
a|�|

���

��)
a|�|

�
= ((a))(a)

:,8(() ≡ ε+ (+ (� + (� + (� + . . .



“a binary tree is an external node 
or an internal node connected to 

two binary trees”

or

Symbolic method: binary trees

type class size GF

external node 0 1

internal node 1 z

Atoms

12

;(a) = � + a;(a)�OGF equation

Construction ; = A� + ;� A• � ;

A�

A•

Class T, the class of all binary trees

Size |t |, the number of internal nodes in t

OGF

see Lecture 3 and stay tuned. 

[a5];(a) =
�

5+ �

�
�5
5

�
� �5�

�5�

How many binary trees with N nodes?

=
�

5��

;5a5;(a) =
�

[�;

a|[|



“a binary tree is an external node 
or an internal node connected to 

two binary trees”

or

Symbolic method: binary trees

type class size GF

external node 1 z

internal node 0 1

Atoms

13

A�

A•

Class T, the class of all binary trees

Size ☐, the number of external nodes in t

OGF

How many binary trees with N external nodes?

OGF equation ;�(a) = a + ;�(a)�

;�(a) = a;(a)

Construction ; = A� + ;� A• � ;

same as # binary trees
with N−1 internal nodes

[a5];�(a) = [a5��];(a) =
�
5

�
�5� �
5� �

�

t

;�(a) =
�

[�;

a�t



“a binary string is a sequence
of 0 bits and 1 bits”

Symbolic method: binary strings

type class size GF

0 bit 1 z

1 bit 1 z

Atoms

14

Class B, the class of all binary strings

Size |b |, the number of bits in b

OGF

Warmup: How many binary strings with N bits?

)(a) =
∑

I∈)

a|I| =
�

5��

)5a5

A�

A�

Construction ) = :,8(A� + A�)

OGF equation )(a) =
�

�− �a

✓[a5])(a) = �5



“a binary string is empty or
a bit followed by a binary string”

Symbolic method: binary strings (alternate)

type class size GF

0 bit 1 z

1 bit 1 z

Atoms

15

Class B, the class of all binary strings

Size |b |, the number of bits in b

OGF

Warmup: How many binary strings with N bits?

)(a) =
∑

I∈)

a|I| =
�

5��

)5a5

A�

A�

✓[a5])(a) = �5

Construction ) = ,+ (A� + A�)× )

OGF equation )(a) = �+ �a)(a)

)(a) =
�

�− �aSolution



Symbolic method: binary strings with restrictions
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T2 = 3

T4 = 8

T0 = 1 T1 = 2

T3 = 5

Ex. How many N-bit binary strings have no two consecutive 0s?

T5 =13

Stay tuned for general treatment (Chapter 8)

0 1 1
0 1 0
1 0 1
1 1 0
1 1 1

0 1 0 1
0 1 1 0
0 1 1 1
1 0 1 1
1 0 1 0
1 1 0 1
1 1 1 0
1 1 1 1

0 1
1 0
1 1

0
1 

0 1 0 1 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1  
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 1 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1



“a binary string with no 00 is either 
empty or 0 or it is 1 or 01 followed 

by a binary string with no 00”

Symbolic method: binary strings with restrictions

17

type class size GF

0 bit 1 z

1 bit 1 z

Atoms

A�

A�

Ex. How many N-bit binary strings have no two consecutive 0s?

Class B00, the class of binary strings with no 00

Size |b |, the number of bits in b

OGF )��(a) =
∑

I∈)��

a|I|

Construction )�� = ,+ A� + (A� + A� × A�)× )��

✓[a5])��(a) = -5 + -5+� = -5+� 1, 2, 5, 8, 13, ...

OGF equation )��(a) = �+ a+ (a+ a�))��(a)

solution )��(a) =
�+ a

�− a− a�

Bob Sedgewick
3,



“a  ... is either ... 
or ...  and ...”

Symbolic method: many, many examples to follow

18

type class size GFAtoms

How many ... with ... ?

Class

Size

OGF

Construction

OGF equation

solution
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Labelled combinatorial classes
have objects composed of N atoms, labelled with the integers 1 through N.

21

Ex. Different unlabelled objects

Ex. Different labelled objects

43

2 1

42

3 1

41

2 3

42

1 3

43

2 1



Labelled class example 1: urns

22

Def. An urn is a set of labelled atoms.

counting sequence EGF

1
1

2
4

3
2

1
3

2

1

U1 = 1 U2 = 1 U3 = 1 U4 = 1

<5 = � La

�

5��

a5

5!
= La



Labelled class example 2: permutations

23

Def. A permutation is a sequence of labelled atoms.

counting sequence EGF

1
1 2

2 1

1 2

2 1

3

3

3 1 2

4 1

1 3

2

2

2 3 1

4

4

4

3

4

4

3 2

4 2

1

1

1 4 2

2 4

3 4

1

1

4 3 1

4

3

3

3

2

2

1 2

2 1

4

4

3 1 4

4 1

1 3

3

4

2 3 4

3

3

2

2

2

1

3 2

4 2

4

3

1 4 3

2 4

3 4

3

2

4 3 2

1

1

2

1

1

1

1 2

2 1

3

3

3 1 2

1 3

2 3

2

1

3 2 1

P1 = 1
P2 = 1

P3 = 2

P4 = 6

75 = 5!
�

� � a

�

5��

5!a5

5!
=

�

5��

a5 =
�

� � a



Labelled class example 3: cycles
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2

1

3

3

1

2

2

1
1

4 2

1

3

3 2

1

4

3 4

1

2

4 3

1

2

2 3

1

4

2 4

1

3

C1 = 1
C2 = 1

C3 = 2

C4 = 6

Def. A cycle is a cyclic sequence of labelled atoms

counting sequence EGF

*5 = (5� �)! ln
�

� � a

�

5��

(5� �)!a5

5!
=

�

5��

a5

5
= ln

�
� � a



Star product operation
Analog to Cartesian product requires relabelling in all consistent ways.

25

Ex 1.

Ex 2.

1 2 31 1 2 3 4 2 1 3 4 3 1 2 4 4 1 2 3★ =

2

1

32

1
★ =

4

3

52

1

4

2

53

1

3

2

54

1

3

2

45

1

4

1

53

2

3

1

54

2

3

1

45

2

2

1

54

3

2

1

45

3
2

1

35

4



Combinatorial constructions for labelled classes 

26

construction notation semantics

disjoint union A + B disjoint copies of objects from A and B

labelled product A ★ B ordered pairs of copies of objects,
one from A and one from B

sequence SEQ ( A ) sequences of objects from A

set SET ( A ) sets of objects from A

cycle CYC ( A ) cyclic sequences of objects from A

A and B are 
combinatorial classes 

of labelled objects



The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

27

construction notation semantics EGF

disjoint union A + B disjoint copies of objects from A and B

labelled product A ★ B ordered pairs of copies of objects,
one from A and one from B

sequence

SEQk ( A ) k- sequences of objects from A

sequence
SEQ ( A ) sequences of objects from A

set
SETk ( A ) k-sets of objects from A

set
SET ( A ) sets of objects from A

cycle

CYCk ( A ) k-cycles of objects from A

cycle
CYC ( A ) cycles of objects from A

((a) + )(a)

((a))(a)

�
� � ((a)

L((a)

ln
�

� � ((a)

((a)R

((a)R/R

((a)R/R!



The symbolic method for labelled classes: basic constructions

28

construction notation EGF

disjoint 
union A + B

labelled 
product A ★ B

sequence

SEQk ( A )

sequence
SEQ ( A )

set
SETk ( A )

set
SET ( A )

cycle

CYCk ( A )

cycle
CYC ( A )

((a) + )(a)

((a))(a)

�
� � ((a)

L((a)

ln
�

� � ((a)

((a)R

((a)R/R

((a)R/R!

class construction EGF counting 
sequence

urns U = SET ( Z )

cycles C = CYC ( Z )

permutations

P = SEQ ( Z )

permutations

P = E + Z ★ P

*5 = (5� �)!*(a) = ln
�

� � a

75 = 5!7(a) =
�

� � a

<(a) = La <5 = �



Proofs of transfers
are immediate from GF counting

29

A ★ B

A + B
�

��(+)

a|�|

|�|! =
�

��(

a|�|

|�|! +
�

��)

a|�|

|�|! = ((a) + )(a)

�

��A�B

a|�|

|�|! =
�

��A

�

��B

�
|�| + |�|

|�|

�
a|�|+|�|

(|�| + |�|)! =
��

��A

a|�|

|�|!

���

��B

a|�|

|�|!

�
= ((a))(a)

Notation. We write A2 for A ★ A, A3 for A ★ A ★ A, etc.



Proofs of transfers
are immediate from GF counting

30

((a)R =
�

5��

{#R�ZLX\LUJLZ�VM�ZPaL 5}a
5

5!
=

�

5��

R{#R�J`JSLZ�VM�ZPaL 5}a
5

5!

((a)R

R
=

�

5��

{#R�J`JSLZ�VM�ZPaL 5}a
5

5!

=
�

5��

R!{#R�ZL[Z�VM�ZPaL 5}a
5

5!

((a)R

R!
=

�

5��

{#R�ZL[Z�VM�ZPaL 5}a
5

5!

class construction EGF

k-sequence SEQk( A )

sequence SEQk( A ) = SEQ0( A ) + SEQ1( A ) + SEQ2( A ) + . . .

k-cycle CYCk( A )

cycle CYCk( A ) = CYC0( A ) + CYC1( A ) + CYC2( A ) + . . .

k-set SETk( A )

set SETk( A ) = SET0( A ) + SET1( A ) + SET2( A ) + . . .

�+ ((a) + ((a)� + ((a)� + . . . =
�

�− ((a)

�+
((a)
�

+
((a)�

�
+
((a)�

�
+ . . . = ln

�
�− ((a)

�+
((a)
�!

+
((a)�

�!
+

((a)�

�!
+ . . . = L((a)

((a)R

((a)R

R

((a)R

R!



Labelled class example 4: sets of cycles
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Q. How many sets of cycles of labelled atoms?

P*1 = 1

P*2 = 2

P*3 = 6
P*4 = 24



Symbolic method: sets of cycles

type class size GF

labelled atom Z 1 z

Atom

32

Class P*, the class of all sets of cycles of atoms

Size |p |, the number of atoms in p

EGF

How many sets of cycles of length N ?

Construction 7∗ = :,;(*@*(A))

OGF equation 7∗(a) = exp
(
ln

�
�− a

)
=

�
�− a

Counting sequence 7∗5 = 5![a5]7∗(a) = 5!

7∗(a) =
∑

W∈7∗

a|W|

|W|! =
�

5��

7�
5
a5

5!



Aside: A combinatorial bijection

33

A permutation is a set of cycles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 12 11 10 5 15 1 3 7 6 13 8 2 16 4 14

Standard representation

6 4

10

15

Set of cycles representation

1

7

9
5

2 8

11

313

16

12

14



Derangements

N people go to the opera and leave their hats on a shelf in the cloakroom. 
When leaving, they each grab a hat at random. 

Q. What is the probability that nobody gets their own hat ? 

Definition. A derangement is a permutation with no singleton cycles

34



Derangements (various versions)

A group of N people go to the opera and leave their hats in the cloakroom. 
When leaving, they each grab a hat at random. 

Q. What is the probability that nobody gets their own hat ? 

A group of N sailors go ashore for revelry that leads to a state of inebriation. 
When returning, they each end up sleeping in a random cabin. 

Q. What is the probability that nobody sleeps in their own cabin ? 

A professor returns exams to N students by passing them out at random. 

Q. What is the probability that nobody gets their own exam ? 

A group of N students who live in single rooms go to a party that leads to a 
state of inebriation.  When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room ? 

35



Derangements
are permutations with no singleton cycles.

36

D1 = 0

D2 = 1

D3 = 2
D4 = 9



Symbolic method: derangements

37

Class D, the class of all derangements

Size |p |, the number of atoms in p

EGF

How many derangements of length N ?

+(a) =
∑

K∈+

a|K|

|K|!
=

�

5��

+5
a5

5!

“Derangements are permutations 
with no singleton cycles" Construction + = :,;(*@*>�(A))

= exp
(
ln

�
�− a

− a
)

OGF equation +(a) = La
�/�+a�/�+a�/�+... =

L−a

�− a

Expansion [a5]+(a) � +5

5!
=

�

��R�5

(��)R

R!
� �
L

probability that a random 
permutation is a derangement see “Asymptotics” lecture

simple convolution

type class size GF

labelled atom Z 1 z

Atom

:L[(A) !+ = 7

La+(a) =
�

�− a

Alternate derivation



Derangements

A.
�
L

.
= �.�����

38

A group of N students who live in single rooms go to a party that leads to a 
state of inebriation.  When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room ? 



Derangements

39

A group of N graduating seniors each throw their hats in the air 
and each catch a random hat.

Q. What is the probability that nobody gets their own hat back ? 

A.
�
L

.
= �.�����



Generalized derangements

40

In the hats-in-the-air scenario, a student can get her hat back by "following the cycle".

Q. What is the probability that all cycles are of length > M ? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 12 11 10 5 15 1 3 7 6 13 8 2 16 4 14



Symbolic method: generalized derangements

41

Class DM, the class of all generalized derangements

Size |d |, the number of atoms in d

EGF

How many permutations of length N  have no cycles of length ≤ M ?

+4(a) =
∑

K∈+4

a|K|

|K|!
=

�

5��

+45
a5

5!

Construction +4 = :,;(*@*>4(A))

?? M-way convolution (stay tuned)

= exp
(
ln

�
�− a

− a− a�/�− . . .− a4/4
)

OGF equation +4(a) = L
a4+�
4+� + a4+�

4+� +...

=
L−a−

a�
� − a�

� −... a4
4

�− a

Expansion +45 =

type class size GF

labelled atom Z 1 z

Atom
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Generating coefficient asymptotics
are often immediately derived via general "analytic" transfer theorems.

44

Theorem. If f (z) has N derivatives, then [ zN ]f (z) = f (N )(0)/N ! 

Example 1. Taylor's theorem

[see next slide]

Example 3. Radius-of-convergence transfer theorem
Most are based on 
complex asymptotics. 
Stay tuned for Part 2

Theorem. If f (z) and g (z) are polynomials, then

where 1/β is the largest root of g (provided that it has multiplicity 1).

Example 2. Rational functions transfer theorem (see "Asymptotics" lecture)

[aU]
M(a)
N(a)

= −βM(�/β)
N′(β)

βU see “Asymptotics” 
lecture for general case



Radius-of-convergence transfer theorem

45

Theorem. If f (z) has radius of convergence >1 with f (1) ≠ 0, then

for any real α ∉ 0, −1, −2, ...

[aU]
M(a)

(�− a)α
∼ M(�)

(
U+ α− �

U

)
∼ M(�)

Γ(α)
Uα−�

Gamma function
(generalized factorial )

Γ(a) =
∫ ∞

�
[a−�L−[K[

Γ(α+ �) = αΓ(α)

Γ(5+ �) = 5!

Γ(�) = �

Γ(�/�) =
√
�

Corollary. If f (z) has radius of convergence >ρ with f (ρ) ≠ 0, then

for any real α ∉ 0, −1, −2, ...

[aU]
M(a)

(�− a/ρ)α
∼ M(ρ)

Γ(α)
ρUUα−�

convolution,
f1 + f2 + ... + fn ~ f (1)

standard asymptotics
with generalized

binomial coefficient



Radius-of-convergence transfer theorem: applications

46

Corollary. If f (z) has radius of convergence >ρ with f (ρ) ≠ 0, then

for any real α ∉ 0, −1, −2, ...

[aU]
M(a)

(�− a/ρ)α
∼ M(ρ)

Γ(α)
ρUUα−�

Ex 1: Catalan

Ex 2: Derangements

[a5];(a) � �5�
�5�

� = � � = � M(a) = L�a�a�/�...�a4/4

+4(a) =
L�a�a�/�...�a4/4

� � a

[a5]+4(a) � 5!

L/4

;(a) =
�
�a

(� �
�
� � �a)

�(��/�) = ���(�/�) = ��
�
�

� = �/� � = ��/� M(a) = ��/�

Bob Sedgewick
  n

Bob Sedgewick
−



Transfer theorems based on complex asymptotics
provide universal laws of sweeping generality
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Stay tuned for many more (in Part 2).

Example: Context-free constructions

< G� > = 67�(< G� >, < G� >, . . . , < Gt >)

< G� > = 67�(< G� >, < G� >, . . . , < Gt >)

. . .

< Gt > = 67[(< G� >, < G� >, . . . , < Gt >)

A system of combinatorial  constructions

.�(a) = -�(.�(a),.�(a), . . . ,.[(a))

.�(a) = -�(.�(a),.�(a), . . . ,.[(a))

. . .

.[(a) = -[(.�(a),.�(a), . . . ,.[(a))

transfers to a system of GF equations

symbolic 
method

.�(a) = -(.�(a),.�(a), . . . ,.[(a))

that reduces to a single GF equation

Grobner basis 

elimination

.(a) ∼ J− H
√

�− Ia

that has an explicit solution

Drmota-Lalley-Woods 
theorem

.5 ∼ H

�
√
�5�

I5 !!that transfers to a 
simple asymptotic form

singularity analysis
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Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures. 

50

Ex: How many binary trees with N nodes?

T = E + Z × T × T

combinatorial construction

                            

GF

                  
;5 � �5�

�5�

coefficient
asymptotics

;(a) =
�
�a

(� �
�
� � �a)



Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures. 
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Ex: How many binary trees with N nodes?

T = E + Z × T × T

combinatorial construction

                            

GF equation

                  
;5 � �5�

�5�

coefficient
asymptotics

Note: With complex asymptotics, we
can transfer directly from GF equation
(no need to solve it). See Part 2.

;(a) = � + a;(a)�



Old vs. New: Two ways to count binary trees
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Old Recurrence ➛ GF
Expand GF

Asymptotics

New

T = E + Z × T × T                             
                  

;5 � �5�
�5�

;(a) = � + a;(a)�



Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures. 
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Ex: How many generalized derangements?

                  

coefficient
asymptotics

� 5!

L/4
                            

GF equation

L�a�a�/�...�a4/4

� � a
                          

combinatorial construction

+4 = :,;(*@*>4(A))



A standard paradigm for analytic combinatorics

Fundamental constructs

•elementary or trivial

•confirm intuition

Variations

•unlimited possibilities

•not easily analyzed otherwise

Compound constructs

•many possibilities

•classical combinatorial objects

•expose underlying structure



Combinatorial parameters
are handled as two counting problems via cumulated costs.

55

Ex: How many leaves in a random binary tree?

                            
                  

;5 � �5�
�5�

                            
                  

T = E + Z × T × T

1. Count trees

T = E + Z × T × T

2. Count leaves in all trees

*5 � �5��
�
�5

           
3. Divide

*5
;5

� 5
�

;\(�, a) =
a�

� � �a

Symbolic method works for BGFs (see text)

;(a) =
�
�a

(� �
�
� � �a)



Analytic combinatorics
is a calculus for the quantitative study of large combinatorial structures. 
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Features: 
• Analysis begins with formal combinatorial constructions.
• The generating function is the central object of study.
• Transfer theorems can immediately provide results from formal descriptions.

• Results extend, in principle, to any desired precision on the standard scale.
• Variations on fundamental constructions are easily handled.

combinatorial

constructions

generating

function

equation

symbolic

transfer
theorem

coefficient

asymptotics

analytic

transfer
theorem

the “symbolic method”



Stay tuned
for many applications of analytic combinatorics
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Bitstrings 10111110100101001100111000100111110110110100000111100001100111011101111101011000

11010010100011110100111100110100111011010111110000010110111001101000000111001110

11101110101100111010111001101000011000111001010111110011001000011001000101010010

10111000011011000110011101110011011011110111110011101011000011001100101000000110

10101100111010001101101110110010010110100101001101111100110000001111101000001111

10000010011000001100011000100001111001110011110000011001111110011011000100100111

10001010101110001110101100000110000011101010100010110001001101111110011110110010

00111011001011100100001100001001111010010011001100001100111010011010000101000111

00111111100110110111011011101010011011011100011111111010111010011000000100101110

10101000111100001010000011001000001101010010100011001100101010101110110111111110

11000000101111011011000101011010110010010000011101110010000001101010000000101000

11101111011011111011111111110100111010010111111011101001110100011000100100010010

00111111100111010110111110000100010001110000111010111100101011111001110101011111

Mappings

7

6

19
5

2 8

11

13

16
12

24

10

27

29

3

22

31

18

17 21

35

33 30

25

23

15

37

36

34

32

26

1428

19

20

4

Permutations
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 12 11 10 5 15 1 3 7 6 13 8 2 16 4 14

11 7 8   

5 2

9 15 3 4

10 6 16 14

12 13   

1Trees

and applications to the analysis of algorithms
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Exercise 5.1

Practice with counting bitstrings.
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Exercise 5.3

Practice with counting trees.
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Exercise 5.7

Practice with counting permutations.
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Exercises 5.15 and 5.16

Practice with tree parameters.
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Assignments for next lecture

1. Read pages 219-255 in text.

    

2. Write up solutions to Exercises 5.1, 5.3, 5.7, 5.15, and 5.16.
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