ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Features:

- Analysis begins with formal *combinatorial constructions*.
- The generating function is the central object of study.
- *Transfer theorems* can immediately provide results from formal descriptions.
- Results extend, in principle, to any desired precision on the standard scale.
- Variations on fundamental constructions are easily handled.

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with *N* nodes?

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

• The symbolic method

- Labelled objects
- Coefficient asymptotics
- Perspective

5a.AC.Symbolic

The symbolic method

is an approach for translating <i>combinatorial constructions</i> to GF equations					
			Examples		
	 Define a <i>class</i> of combinatorial objects. 		A, B, Z		
	• Define a notion of <i>size.</i>		b		
	• Define a <i>GF</i> whose coefficients count objects of the same size.		A(z)		
	• Define <i>operations</i> suitable for constructive definitions of objects.		$A \times B$		
	• Develop translations from constructions to operations on GFs.		A(z)B(z)		

Formal basis:		Building blocks			
• A combinatorial class is a set of objects and a size function.	notation	denotes	contains		
 An <i>atom</i> is an object of size 1. An <i>neutral object</i> is an atom of size 0. 		atomic class	an atom		
 An neutral object is an atom of size 0. A combinatorial construction uses the union, product, and 	E	neutral class	neutral object		
sequence operations to define a class in terms of atoms and other classes.		empty class	nothing		

Unlabelled class example 1: natural numbers

Def. A natural number is a set (or a sequence) of atoms.

unary notation

6

Unlabelled class example 2: bitstrings

Def. A *bitstring* is a sequence of 0 or 1 bits.

				0000 0001 0010 0011
$B_0 = 1$	$0 \\ 1 \\ B_1 = 2$	0 0 0 1 1 1 0 1 1 $B_2 = 4$	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ B_3 = 8 \end{array}$	$\begin{array}{c} 0 \ 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 1 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \\ 1 \ 1 \ 0 \\ 1 \ 1 \ 1 \\ 1 \ 1 \ 0 \\ 1 \ 1 \ 1 \ 1 \end{array}$
				$B_4 = 16$

counting sequence OGF $B_N = 2^N \qquad \frac{1}{1-2z}$

$$\sum_{N \ge 0} 2^N z^N = \sum_{N \ge 0} (2z)^N = \frac{1}{1 - 2z}$$

7

Unlabelled class example 3: binary trees

Def. A *binary tree* is empty or a sequence of a node and two binary trees

 $T_4 = 14$

Combinatorial constructions for unlabelled classes

construction	notation	semantics		
disjoint union	A + B	disjoint copies of objects from A and B		
Cartesian product	$A \times B$	ordered pairs of copies of objects, one from <i>A</i> and one from <i>B</i>	~	A and combinate of unlabe
sequence	SEQ(A)	sequences of objects from A		

Ex 1. $(00 + 01) \times (101 + 110 + 111) = 00101 00110 00111 01101 01111$

Ex 2. • \times SEQ(•) = • •• ••• ••• ••• •••• •••• •••••

Ex 3. $\Box \times \bullet \times \bullet = \bullet$

"unlabelled" ?? Stay tuned.

9

The symbolic method for unlabelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of unlabelled objects with OGFs A(z) and B(z). Then

construction	notation	semantics	OGF
disjoint union	A + B	disjoint copies of objects from A and B	A(z) + B(z)
Cartesian product	$A \times B$	ordered pairs of copies of objects, one from <i>A</i> and one from <i>B</i>	A(z)B(z)
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1 - A(z)}$

Proofs of transfers

are immediate from GF counting

A + B

$$\sum_{\gamma \in A+B} z^{|\gamma|} = \sum_{\alpha \in A} z^{|\alpha|} + \sum_{\beta \in B} z^{|\beta|} = A(z) + B(z)$$

 $A \times B$

$$\sum_{\gamma \in A \times B} z^{|\gamma|} = \sum_{\alpha \in A} \sum_{\beta \in B} z^{|\alpha| + |\beta|} = \left(\sum_{\alpha \in A} z^{|\alpha|}\right) \left(\sum_{\beta \in B} z^{|\beta|}\right) = A(z)B(z)$$

SEQ(A)

$$SEQ(A) \equiv \epsilon + A + A^{2} + A^{3} + A^{4} + \dots$$
$$1 + A(z) + A(z)^{2} + A(z)^{3} + A(z)^{4} + \dots = \frac{1}{1 - A(z)}$$

П

Symbolic method: binary trees

How many binary trees with *N* nodes?

Class	<i>T</i> , the class of all binary trees	Atoms	type	2	class	size	GF	
Size	t . the number of internal nodes in t		external	node	Z_{\Box}	0	1	
	$T(z) = \sum z^{ t } = \sum T z^{N}$		internal	node	Z.	1	z	
OGF	$\Gamma(Z) = \sum_{t \in T} Z^{t+1} = \sum_{N \ge 0} \Gamma_N Z$							
Const OGF e	ruction $T = Z_{\Box} + T \times$	$Z_{\bullet} \times T$ $T(z)^2$		"a bina or an i	ry tree i nternal two bi	s an ex node co nary tro	cternal onnecte ees"	node ed to
	$[z^N]T(z) = \frac{1}{N+1} \binom{2}{N}$	$\binom{N}{N} \sim \frac{4^N}{\sqrt{\pi N}}$	$\overline{\sqrt{3}}$					
			∕ s	ee Lectur	re 3 and	stay tı	uned.	

Symbolic method: binary trees

How many binary trees with N external nodes?

Class	T, the class of all binary trees	Atoms	type	е	class	size	GF	
Size	t , the number of <i>external</i> nodes in <i>t</i>		external	node	Z_{\Box}		Z	
0.65	$T^{\Box}(z) = \sum z^{[t]}$		internal	node	Z.	0	$\left(1\right)$	
UGF	$t \in T$			"a bina	ry tree i	s an ex	ternal not	de
Construction $T = Z_{\Box} + T \times Z_{\bullet} \times T$				two binary trees"				10
OGF e	quation $T^{\Box}(z) = z + T^{\Box}$	on $T^{\Box}(z) = z + T^{\Box}(z)^2$						
	$T^{\Box}(z) = zT($	Z)						\geq
	$[z^{N}]T^{\Box}(z) = [z^{N-1}]T(z)$	$=\frac{1}{N}\binom{2}{N}$	$\binom{N-2}{N-1}$	sa wi	me as # th <i>N</i> –1 i	binary nternal	trees nodes	

Symbolic method: binary strings

Warmup: How many binary strings with *N* bits?

Class	B, the class of all binary strings	Atoms	type	class	size	GF	
Size	<i>b</i> , the number of bits in <i>b</i>		0 bit	Z_0	1	Ζ	
			1 bit	Z_1	1	z	
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^{\prime N}$						
Const	ruction $B = SEQ(Z_0)$	$+ Z_1)$	"a	binary st of 0 b	tring is its and	a sequ 1 bits"	ence
OGF e	quation $B(z) = \frac{1}{1-z}$	2 <i>z</i>					
	$[z^N]B(z) =$	= 2 ^N					

Symbolic method: binary strings (alternate)

Warmup: How many binary strings with *N* bits?

Class	B, the class of all binary strings	Atoms	type	class	size	GF	
Size	<i>b</i> , the number of bits in <i>b</i>		0 bit	Z_0	1	Ζ	
0.20			1 bit	Z_1	1	z	
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$						
Const	ruction $B = E + (Z_0 + Z_0)$	$(X_1) \times B$	"a a bit	binary s followe	string is d by a b	empty oinary	y or string"
OGF e	B(z) = 1 + 2z	B(z)					
Soluti	on $B(z) = \frac{1}{1-2}$						
	$[z^N]B(z) = 2$	N 🗸					

Symbolic method: binary strings with restrictions

Ex. How many *N*-bit binary strings have no two consecutive 0s?

Stay tuned for general treatment (Chapter 8)

Symbolic method: binary strings with restrictions

Ex. How many *N*-bit binary strings have no two consecutive 0s?

Class	B_{00} , the class of binary strings with no 00	Atoms	type	class	size	GF	
Size	<i>b</i> , the number of bits in <i>b</i>		0 bit	Z_0	1	Ζ	
	\mathbf{D} () $\mathbf{\Sigma}$ [b]		1 bit	Z_1	1	z	
OGF	$B_{00}(Z) = \sum_{b \in B_{00}} Z^{[S]}$						
Constr	uction $B_{00} = E + Z_0 + (Z_1 + Z_0 \times Z_1)$	$) \times B_{00}$	"a binar empty o by a	ry string or 0 or i binary s	with n t is 1 or string w	o 00 is [.] 01 fol [,] ith no	either llowed 00"
OGF eq	$B_{00}(z) = 1 + z + (z + z^2)B_0$	$_{00}(z)$					
solutio	n $B_{00}(z) = \frac{1+z}{1-z-z^2}$						
	$[z^N]B_{00}(z) = F_N + F_{N+1} =$	F_{N+2}	1, 2, 5, 8, 13,	√			
			3,				

17

Symbolic method: many, many examples to follow

How many ... with ...?

Class	Atoms	type	class	size	GF
Size					
OGF					
Construction	"a is either or and"				
OGF equation			AN INTRODUCT		Analytic ombinatorics
solution		ALC	ANALYS ORITHM	IS IS	Philippe Flajolet and Robert Sedgewick
			ROBERT SEDOEN PHILIPPE FLAJ		

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

• The symbolic method

- Labelled objects
- Coefficient asymptotics
- Perspective

5a.AC.Symbolic

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5b.AC.Labelled

Labelled combinatorial classes

have objects composed of N atoms, labelled with the integers 1 through N.

Ex. Different unlabelled objects

Ex. Different labelled objects

Labelled class example 1: urns

 $U_2 = 1$

Def. An *urn* is a set of labelled atoms.

counting sequence	EGF
$U_N = 1$	e ^z

$$\sum_{N\geq 0}\frac{z^N}{N!}=\mathrm{e}^z$$

Labelled class example 2: permutations

Def. A *permutation* is a sequence of labelled atoms.

(1)

(2)

 $P_2 = 1$

 $\left(1\right)$

 $\mathbf{1}$

$$\sum_{N \ge 0} \frac{N! z^N}{N!} = \sum_{N \ge 0} z^N = \frac{1}{1 - z}$$

Labelled class example 3: cycles

Def. A *cycle* is a cyclic sequence of labelled atoms

Star product operation

Analog to Cartesian product requires *relabelling in all consistent ways*.

Ex 1. $(1) \bigstar (1) (2) (3) = (1) (2) (3) (4) (2) (1) (3) (4)$ (4)(1)(2)(3)3124

Combinatorial constructions for labelled classes

construction	notation	semantics	
disjoint union	A + B	disjoint copies of objects from A and B	
labelled product	A ★ B	ordered pairs of copies of objects, one from <i>A</i> and one from <i>B</i>	A and B are combinatorial classes of labelled objects
sequence	SEQ(A)	sequences of objects from A	
set	SET(A)	sets of objects from A	
cycle	CYC(A)	cyclic sequences of objects from A	

The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction	notation	semantics	EGF
disjoint union	A + B	disjoint copies of objects from A and B	A(z) + B(z)
labelled product	A ★ B	ordered pairs of copies of objects, one from <i>A</i> and one from <i>B</i>	A(z)B(z)
	$SEQ_k(A)$	k- sequences of objects from A	$A(z)^k$
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1 - A(z)}$
	$SET_k(A)$	k-sets of objects from A	$A(z)^k/k!$
set	SET(A)	sets of objects from A	$e^{A(z)}$
	$CYC_k(A)$	k-cycles of objects from A	$A(z)^k/k$
cycle	CYC(A)	cycles of objects from A	$\ln \frac{1}{1 - A(z)}$

The symbolic method for labelled classes: basic constructions

class	construction		countina		construction	notation	EGF
		EGF	sequence	sequence	disjoint union	A + B	A(z) + B(z)
urns	U = SET(Z)	$U(z) = e^{z}$	$U_{N} = 1$		labelled product	A ★ B	A(z)B(z)
						SEQ_k (A)	$A(z)^k$
cycles	C = CYC(Z)	$C(z) = \ln \frac{1}{1-z}$	$C_N = (N-1)!$ $P_N = N!$		sequence	SEQ(A)	$\frac{1}{1 - A(z)}$
						$SET_k(A)$	$A(z)^k/k!$
permutations	P = SEQ(Z)	$P = SEQ(Z)$ $P(z) = \frac{1}{1-z}$ $P = E + Z \star P$			set	SET(A)	$e^{A(z)}$
						$CYC_k(A)$	$A(z)^k/k$
	$P = E + Z \star P$				cycle	CYC(A)	$\ln \frac{1}{1 - A(z)}$

Proofs of transfers

are immediate from GF counting

A + B $\sum_{\gamma \in A+B} \frac{z^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in A} \frac{z^{|\alpha|}}{|\alpha|!} + \sum_{\beta \in B} \frac{z^{|\beta|}}{|\beta|!} = A(z) + B(z)$

$$A \star B$$

$$\sum_{\gamma \in \mathcal{A} \times \mathcal{B}} \frac{z^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} \binom{|\alpha| + |\beta|}{|\alpha|} \frac{z^{|\alpha| + |\beta|}}{(|\alpha| + |\beta|)!} = \left(\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}\right) \left(\sum_{\beta \in \mathcal{B}} \frac{z^{|\beta|}}{|\beta|!}\right) = A(z)B(z)$$

Notation. We write A^2 for $A \star A$, A^3 for $A \star A \star A$, etc.

Proofs of transfers

are immediate from GF counting

$$A(z)^{k} = \sum_{N \ge 0} \{ \#k \text{-sequences of size } N \} \frac{z^{N}}{N!} = \sum_{N \ge 0} k \{ \#k \text{-cycles of size } N \} \frac{z^{N}}{N!} = \sum_{N \ge 0} k! \{ \#k \text{-sets of size } N \} \frac{z^{N}}{N!}$$
$$\frac{A(z)^{k}}{k} = \sum_{N \ge 0} \{ \#k \text{-cycles of size } N \} \frac{z^{N}}{N!}$$
$$\frac{A(z)^{k}}{k!} = \sum_{N \ge 0} \{ \#k \text{-sets of size } N \} \frac{z^{N}}{N!}$$

class	construction	EGF
k-sequence	$SEQ_k(A)$	$A(z)^k$
sequence	$SEQ_k(A) = SEQ_0(A) + SEQ_1(A) + SEQ_2(A) + \dots$	$1 + A(z) + A(z)^{2} + A(z)^{3} + \ldots = \frac{1}{1 - A(z)}$
k-cycle	$CYC_k(A)$	$\frac{A(z)^k}{k}$
cycle	$CYC_k(A) = CYC_0(A) + CYC_1(A) + CYC_2(A) + \dots$	$1 + \frac{A(z)}{1} + \frac{A(z)^2}{2} + \frac{A(z)^3}{3} + \ldots = \ln \frac{1}{1 - A(z)}$
k-set	$SET_k(A)$	$\frac{A(z)^k}{k!}$
set	$SET_k(A) = SET_0(A) + SET_1(A) + SET_2(A) + \dots$	$1 + \frac{A(z)}{1!} + \frac{A(z)^2}{2!} + \frac{A(z)^3}{3!} + \ldots = e^{A(z)}$

Labelled class example 4: sets of cycles

Q. How many sets of cycles of labelled atoms?

31

Symbolic method: sets of cycles

How many sets of cycles of length N?

Class	P*, the class of all se	ts of cycles of atoms	Atom	type	class	size	GF
Size	<i>p</i> , the number of at	oms in <i>p</i>		labelled atom	Ζ	1	Ζ
EGF	$P^*(z) = \sum_{p \in P^*} \frac{z^{ p }}{ p !} =$	$= \sum_{N\geq 0} P_N^* \frac{Z^N}{N!}$					
Const	ruction	$P^* = SET(CYC(Z)$)				
		4					

OGF equation $P^*(z) = \exp\left(\ln\frac{1}{1-z}\right) = \frac{1}{1-z}$ Counting sequence $P^*_N = N![z^N]P^*(z) = N!$ Aside: A combinatorial bijection

A permutation is a set of cycles.

Standard representation

Set of cycles representation

Derangements

N people go to the opera and leave their hats on a shelf in the cloakroom. When leaving, they each grab a hat at random.

Q. What is the probability that nobody gets their own hat?

Definition. A derangement is a permutation with no singleton cycles

Derangements (various versions)

A group of N people go to the opera and leave their hats in the cloakroom. When leaving, they each grab a hat at random.

Q. What is the probability that nobody gets their own hat?

A professor returns exams to N students by passing them out at random.

Q. What is the probability that nobody gets their own exam?

A group of *N* sailors go ashore for revelry that leads to a state of inebriation. When returning, they each end up sleeping in a random cabin.

Q. What is the probability that nobody sleeps in their own cabin?

A group of *N* students who live in single rooms go to a party that leads to a state of inebriation. When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room?

Derangements

are permutations with no singleton cycles.

Symbolic method: derangements

How many derangements of length N?

Class	D, the class of all derangements	Atom	type	class	size	GF
			labelled atom	Ζ	1	z
Size	p , the number of atoms in p					
EGF	$D(z) = \sum_{d \in D} \frac{z^{ d }}{ d !} = \sum_{N \ge 0} D_N \frac{z^N}{N!}$					

Derangements

A group of *N* students who live in single rooms go to a party that leads to a state of inebriation. When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room?

A.
$$\frac{1}{e} \doteq 0.36788$$

Derangements

A group of *N* graduating seniors each throw their hats in the air and each catch a random hat.

Q. What is the probability that nobody gets their own hat back?

A.
$$\frac{1}{e} \doteq 0.36788$$

Generalized derangements

In the hats-in-the-air scenario, a student can get her hat back by "following the cycle".

Q. What is the probability that all cycles are of length > M?

Symbolic method: generalized derangements

How many permutations of length N have no cycles of length $\leq M$?

Class	D_{M} the class of all generalized derangements		type	class	size	GF
			labelled atom	Ζ	1	z
Size	d , the number of atoms in d					
EGF	$D_M(z) = \sum_{d \in D_M} \frac{z^{ d }}{ d !} = \sum_{N \ge 0} D_M N \frac{z^N}{N!}$					

Construction
$$D_M = SET(CYC_{>M}(Z))$$
OGF equation $D_M(z) = e^{\frac{z^{M+1}}{M+1} + \frac{z^{M+2}}{M+2} + \dots} = \exp\left(\ln\frac{1}{1-z} - z - z^2/2 - \dots - z^M/M\right)$ $= \frac{e^{-z - \frac{z^2}{2} - \frac{z^3}{3} - \dots - \frac{z^M}{M}}{1-z}$ Expansion $D_{MN} = ??$ M-way convolution (stay tuned)

41

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5b.AC.Labelled

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5c.AC.Asymptotics

Generating coefficient asymptotics

are often *immediately* derived via general "analytic" transfer theorems.

Example 1. Taylor's theorem

Theorem. If f(z) has N derivatives, then $[z^N]f(z) = f^{(N)}(0)/N!$

Example 2. Rational functions transfer theorem (see "Asymptotics" lecture)

Theorem. If f(z) and g(z) are polynomials, then

$$[z^n]\frac{f(z)}{g(z)} = -\frac{\beta f(1/\beta)}{g'(\beta)}\beta^n$$

where $1/\beta$ is the largest root of *g* (provided that it has multiplicity 1).

 Example 3. Radius-of-convergence transfer theorem
 Most are based on complex asymptotics.

 [see next slide]
 Stay tuned for Part 2

Analytic Combinatorics

see "Asymptotics" lecture for general case

Radius-of-convergence transfer theorem

Theorem. If f(z) has radius of convergence >1 with $f(1) \neq 0$, then

$$[z^{n}]\frac{f(z)}{(1-z)^{\alpha}} \sim f(1)\binom{n+\alpha-1}{n} \sim \frac{f(1)}{\Gamma(\alpha)}n^{\alpha-1}$$

for any real $\alpha \notin 0, -1, -2, ...$
$$f_{1} + f_{2} + ... + f_{n} \sim f(1)$$

$$standard asymptoticswith generalizedbinomial coefficient$$

Gamma function (generalized factorial)

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$
$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$
$$\Gamma(N + 1) = N!$$
$$\Gamma(1) = 1$$
$$\Gamma(1/2) = \sqrt{\pi}$$

Corollary. If f(z) has radius of convergence $>\rho$ with $f(\rho) \neq 0$, then

$$[z^n]\frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)}\rho^n n^{\alpha-1}$$

for any real $\alpha \notin 0, -1, -2, ...$

Radius-of-convergence transfer theorem: applications

Corollary. If f(z) has radius of convergence $>\rho$ with $f(\rho) \neq 0$, then

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^n n^{\alpha-1}$$

for any real $\alpha \notin 0, -1, -2, ...$

Ex 1: Catalan

$$T(z) = \frac{1}{2z}(1 - \sqrt{1 - 4z})$$

$$[z^{N}]T(z) \sim \frac{4^{N}}{\sqrt{\pi N^{3}}}$$

$$\rho = 1/4 \quad \alpha = -1/2 \quad f(z) = -1/2$$

$$\Gamma(-1/2) = -2\Gamma(1/2) = -2\sqrt{\pi}$$
Ex 2: Derangements

$$D_{M}(z) = \frac{e^{-z - z^{2}/2 \dots - z^{M}/M}}{1 - z}$$

$$[z^{N}]D_{M}(z) \sim \frac{N!}{e^{H_{M}}}$$

$$\rho = 1 \quad \alpha = 1 \quad f(z) = e^{-z - z^{2}/2 \dots - z^{M}/M}$$

46

Transfer theorems based on complex asymptotics

provide *universal laws* of sweeping generality Example: Context-free constructions transfers to a system of GF equations A system of combinatorial constructions $< \mathbf{G}_0 > = OP_0(<\mathbf{G}_0>, <\mathbf{G}_1>, \ldots, <\mathbf{G}_t>)$ $G_0(z) = F_0(G_0(z), G_1(z), \dots, G_t(z))$ symbolic $< \mathbf{G}_1 > = OP_1(< \mathbf{G}_0 >, < \mathbf{G}_1 >, \dots, < \mathbf{G}_t >)$ $G_1(z) = F_1(G_0(z), G_1(z), \dots, G_t(z))$ method $< \mathbf{G}_{t} > = OP_{t}(<\mathbf{G}_{0}>, <\mathbf{G}_{1}>, \ldots, <\mathbf{G}_{t}>)$ $G_t(z) = F_t(G_0(z), G_1(z), \dots, G_t(z))$ Grobner basis elimination that reduces to a single GF equation that has an *explicit* solution $G_0(z) = F(G_0(z), G_1(z), \dots, G_t(z))$ → $G(z) \sim c - a\sqrt{1 - bz}$ Drmota-Lalley-Woods theorem singularity analysis that transfers to a $G_N \sim \frac{a}{2\sqrt{\pi N^3}} b^N$ II simple asymptotic form Stay tuned for many more (in Part 2).

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5c.AC.Asymptotics

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5d.AC.Perspective

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with *N* nodes?

coefficient asymptotics

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with *N* nodes?

5 I

Old vs. New: Two ways to count binary trees

52

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many generalized derangements?

A standard paradigm for analytic combinatorics

Fundamental constructs

- elementary or trivial
- confirm intuition

Compound constructs

- many possibilities
- classical combinatorial objects
- expose underlying structure

Variations

- unlimited possibilities
- not easily analyzed otherwise

Combinatorial parameters

are handled as two counting problems via cumulated costs.

Ex: How many leaves in a random binary tree?

1. Count trees

2. Count leaves in all trees

$$T = E + Z \times T \times T$$

$$T_u(1, z) = \frac{z}{\sqrt{1 - 4z}}$$

$$C_N \sim \frac{4^{N-1}}{\sqrt{\pi N}}$$

Symbolic method works for BGFs (see text)

3. Divide

$$\frac{C_N}{T_N} \sim \frac{N}{4}$$

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Features:

- Analysis begins with formal *combinatorial constructions*.
- The generating function is the central object of study.
- *Transfer theorems* can immediately provide results from formal descriptions.
- Results extend, in principle, to any desired precision on the standard scale.
- Variations on fundamental constructions are easily handled.

Stay tuned

for many applications of analytic combinatorics and applications to the analysis of algorithms

Mappings

Bitstrings

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5d.AC.Perspective

Exercise 5.1

Practice with counting bitstrings.

Exercise 5.1 How many bitstrings of length N have no 000?

Exercise 5.3

Practice with counting trees.

Exercise 5.3 Let \mathcal{U} be the set of binary trees with the size of a tree defined to be the total number of nodes (internal plus external), so that the generating function for its counting sequence is $U(z) = z + z^3 + 2z^5 + 5z^7 + 14z^9 + \dots$ Derive an explicit expression for U(z).

Exercise 5.7

Practice with counting permutations.

Exercise 5.7 Derive an EGF for the number of permutations whose cycles are all of odd length.

Exercises 5.15 and 5.16

Practice with tree parameters.

Exercise 5.15 Find the average number of internal nodes in a binary tree of size n with both children internal. \bullet

Exercise 5.16 Find the average number of internal nodes in a binary tree of size n with one child internal and one child external. \bullet

Assignments for next lecture

1. Read pages 219-255 in text.

2. Write up solutions to Exercises 5.1, 5.3, 5.7, 5.15, and 5.16.

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics