ANALYTIC COMBINATORICS
PART ONE

—

WWEE 3. Generating Functions
ALGORITHMS

http://aofa.cs.princeton.edu



ANALYTIC COMBINATORICS
PART ONE

3. Generating Functions

e OGFs

e Solving recurrences

ANALYSIS
A1LGORITHMS e Catalan numbers
. EGFs

 Counting with GFs

http://aofa.cs.princeton.edu

3a.GFs.O0GFs



Ordinary generating functions

Definition.
Z akZ is the ordinary generating function (OGF)

of the sequence ap,ar,az,...,ak,...

Notation. [zN]A(2) is “the coefficient of zN in A(2)”

sequence OGF
N 1
1, 1, 1, 1, 1, ... ZZ =1
N>0
zN
1, 1/2, 1/6, 1/24, ... Z—,Z «— [ZV]ez=1/N!
= N!

Significance. Can represent an entire sequence with a single function.



Operations on OGFs: Scaling

If A(Z)ZZaka is the OGF of agp,ai,az,...,ak,.--

then A(cz) = Zakckzk is the OGF of ag, ca;,c’ay, C’as, ...
k>0

sequence OGF

1
N
1, 1, 1, 1, 1, ... ZZ B

1, 2, 4, 8, 16, 32,

A




Operations on OGFs: Addition

If A=) az isthe OGFof  a0,a1,a2,...,a,---

and B(Z):Zbkzk is the OGF of bo,b1,by, ... by, ...
k>0

then A(z) 4+ B(z) isthe OGFof ag+ bg,ai +bi,ay +by,...,ac+ by ...

Example:
sequence OGF
L1111 Y=
’ ’ ’ ’ y e ‘I —7
N>0
1
NN _
1, 2, 4, 8, 16, 32, ... Z 1 _ 27
N>0
1 1

0, 1, 3, 7, 15, 31, ... 1-27 1-7



Operations on OGFs: Differentiation

If A(z):Zakzk is the OGF of ag,ai,az,...,ag,...

then zA'(z) = Zkakzk is the OGF of  0,a1,2ay,3a;s,...,kag,...

k>1
OGF sequence
1 N
1_Z:Zz 1, 1, 1, 1, 1,
N>0
zZ N
(1—2)2_2’\’2 0, 1, 2, 3, 4, 5, ...
N>1
z? N
(1—2)3:Z(Z)ZN 0, 0, 1, 3, 6, 10, ...
N>2
zM NY N
Ao = 2 (M)Z 0, ..., 1, Mel, (M+2)(M+1)/2, ...
N>M

1 N+ M
WZZ( v )zN 1, M+l, (M+2)(M+1)/2, ...



Operations on OGFs: Integration

If A(z):Zakzk is the OGF of ap,a1,d2,...,Adk, .- -
k>0
V4
Ap—1 . dair a df—1
then A(t)dt = " 7" isthe OGFof 0O.ap, —, —.....—— ...
/O () ,; n s A0y 9 3 37 3 k 3
Example: OGF sequence
1 N
— :Zz 1, 1,1, 1, 1, ...
Z N30
1 zN
h—=> = 0, 1, 1/2, 1/3, 1/4, 1/5, ...



Operations on OGFs: Partial sum

If A(z Zakz is the OGF of agp,ar,as,...,ak,...

1

th
en T

Proof. 1 1_ ZA(Z) _ sz Zanzn

k>0  n>0

_ n+k
Distribute o Z Z dnZ

k>0 n>0

Change nto n—k = Z Z ap_kZ"

k>0 n>k

Switch order of summation. = g g an_ k Z"
n>0 0<k<n

Change k to n—k = Z( Z a

n>0 0<k<n

A(z) is the OGF of ag,ap + ai,ap+ai + ao, ...



Operations on OGFs: Partial sum

If A(Z):Zakzk is the OGF of agp,ar,as,...,ak,...
k>0
1
then 1_ZA(Z) is the OGF of ag,ap +aj,ap +a; +a,...
Example: OGF seqfufkje‘nce
1 N
1—z:ZZ 1, 1,1, 1, 1, ...
N>0

1

N>1

o, 1, 1/2, 1/3, 1/4, 1/5, ...

1 N
1_Zln1_Z:ZHNZ 1, 1+ 1/2, 1+ 1/2 + 1/3, ...



Operations on OGFs: Convolution

If A(Z):Zakzk is the OGF of ap,a1,a2,...,dak, ...
k>0
and B(Z) = Zbkzk is the OGF of bo,b1,b2, ce ,bk, ce
k>0
then A(Z)B(Z) is the OGF of agbg,aibo + aibo, ..., Z abn_k, ...
0<k<n
Proof.
A(z)B(z) = Zakzk anzn
k>0 n>0
k
Distribute = Z Zakbnzn+
k>0 n>0
Change n to n—k = Z Zakbn_kzn
k>0 n>k
Switch order of summation. — ayb,_y z"

n>0 0<k<n



Operations on OGFs: Convolution

If A(Z):Zakzk is the OGF of ap,a1,a2,...,dak, ...
k>0
and B(Z) = Zbkzk is the OGF of bo,b1,b2, ce ,bk, ce
k>0
then A(Z)B(Z) is the OGF of agbg,aibo + aibo, ..., Z abn_k, ...
0<k<n
Example: OGF sequence
L > 2N 1,1, 1, 1, 1
1 . Z H J H y J
N>0



Expanding a GF (summary)

The process of expressing an unknown GF as a power series
(finding the coefficients) is known as expanding the GF.

Techniques we have been using:

- f//(O) f'///(o) f////(O)
1. Taylor theorem: f(z) = f(0) + f'(0)z + Tz2 T 3 i P+
Example.
; 72 2 7
e’ =1 +Z—|—i‘|‘§+ﬂ‘|‘---
2. Reduce to known GFs.
1
Example. 1 : : Integrate 1 to get 11"11 —
2] In = — = Hy — _Z
(1 - Z) 1-z 1<k<N k then convolve with In
- = 11—z 1—2z



In-class exercise

Operations on OGFs: Partial sum

Exercise 3.4 Prove that Z Hy=(N+1)(Hnye1 — 1) TS
7) = agz® s the of ag,a1,as, ..., ...
‘ISkSN k>0

then !

1-z

A(z) isthe OGFof ag,ap+aj,ap+a; +a,...

Example: OGF sequence

N
PZ*ZZ 1,1,1,1, 1, ...
N.

1. Find GF for LHS (convolve 1 ! with 1 1 1n1 ! ) 11111222% 0. 1, 12, 1/3, 1/4, 15, ...
— 7 — 7 — 7 N>1
1 1 1 ﬂil“ﬂi:é“\“z‘” 1, 1+1/2, 1+1/2 +1/3, ...
(1 —2)? R
1
2. Expand GF to find RHS coefficients (convolve In ; with W)
— 7 —_
3. Do some math
1 1 1
N
1 = —(N+1—-k = (N+1)Hy N
A g 2. fIN+1-K) (N+1)Hn
1<k<N 1

= (N+1)(H - —)
(N 4+ 1) (HN1 N

=N+ 1)(Hngr o 1)
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Solving recurrences with OGFs

General procedure:
« Make recurrence valid for all n.
« Multiply both sides of the recurrence by z" and sum on n.
 Evaluate the sums to derive an equation satisfied by the OGF.

 Solve the equation to derive an explicit formula for the OGF.
(Use the initial conditions!)

« Expand the OGF to find coefficients.
recurrence

-

.=

1

sequence



Solving recurrences with GFs

For linear recurrences with constant coefficients, the GF equation is a polynomial, so
the general procedure is a algorithm.

Example 4 from previous lecture.

a, =ba,_1 —6a,_» forn>2withag=0anda; =1

Make recurrence valid for all n. a, =b5a,_1 —6a,_7 + I
Multiply by z7 and sum on n. A(z) = 52A(z) — 62°A(2) + 7
Z
Alz) =
Solve. (2) 1571672
: Lo Co C1
Use partial fractions: Alz) = 4+
solution must be of the form 1-3z 1-2z
Solve for coefficients. co+cr=0
2co+ 3¢y = —1
Solutionis co=1 and ¢1=—1 A(Z) 1 1

:1—32_1—22

Expand. a, =3"—2"



Solving linear recurrences with GFs

For linear recurrences with constant coefficients, the GF equation is a polynomial, so
the general procedure is a algorithm.

Example with multiple roots.

a, =b5a,_1 —8a,_» +4a,_3 forn>3withag=0,a; =1anda, =4

Make recurrence valid for all n. an, =5a,_1—8ap,_»+4a,_3+ 0,1 — 2

Multiply by z" and sum on n. A(z) = 52zA(2) — 82°A(z) + 42°A(z) + z — 2
2

Solve. A(z) i

T 1_-57+82 — 473

B z(1 —2z) B z
AD) = A=A =227 ~ G =227

Simplify.

n—1
Expand. a, = N2 «—____ multiplicity 3 gives terms

of the form n2fn, etc.



Solving linear recurrences with GFs

For linear recurrences with constant coefficients, the GF equation is a polynomial, so

the general procedure is a algorithm.

Example with complex roots.

an =2ap_1 —ap—2 +2a,-3

Make recurrence valid for all n.

Multiply by z" and sum on n.

Solve.

Simplify.

Use partial fractions.

Expand.

an = 2ap_1 —ap—y + 2an—3 + 5n0 - 25n1
A(z) = 2zA(2) — Z2A(2) + 222A(z) + 1 — 2z

1—-27
A —
(2) 1—-27z4+22-273
1—-2 1

(1=22)(1+2%) (1+2%)

1,1 1
AR =537

1 N -n_1-n n
anzz(’ + (=) )—5’ (1T+(=1)")

i, 0, -1, 0, 1, O, -1, O, 1...

forn >3 withag =1,a; =0and a, = —1



Solving linear recurrences with GFs (summary)

Solution to  an = X1ap—1 + X2adpn—2 + ... + XeQn—¢
is a linear combination of t terms. zt= Xzt = Xzt 72— - x, 20
Suppose the roots of the polynomial 1 —x7z + X2Z2 + ...+ xtzt

are B1, Bz,..., Br where the multiplicity of Biis miso mi +my+...+m, =t

Solution is i N i N i N
E ciin’ B7 + E Czjn/[5’2 e E Cr/-n/B, terms

0<j<my 0<j<my 0<j<m,

The t constants c¢j are determined from the initial conditions.

Note: complex roots (and —1) introduce periodic behavior.

20


Bob Sedgewick
z  −  x  z       −  x  z       −  ... −  x  z  

Bob Sedgewick
t

Bob Sedgewick
t −1

Bob Sedgewick
t

Bob Sedgewick
t −2

Bob Sedgewick
0

Bob Sedgewick
1

Bob Sedgewick
2


Solving the Quicksort recurrence with OGFs

2
CN:/\/+1+N Z Cr

1<k<N
Multiply both sides by . NCy=N(N+1)+2 Z Cr_
1<k<N
Multiply by zN and sum. Z /\/CNZN — Z /\/(/\/ + 1)ZN + 2 Z Z Ck_1ZN
N>1 N>1 N>11<k<N
) homogeneous equation
Evaluate sums to get an / 2 C(z p'(z2) =2p(2)/(1 — 2)
) ) ) . — 2
ordinary differential equation C(2) (1— 2)3 T 1— 7 solution (integration factor)
p(z) =1/(1 - 2)°
Solve the ODE. (1 - Z)2C(Z))/ = (1 - z)zC'(z) —2(1 —=2)C(2)
C(z) 2
= (1-22(C)-2:70) =
( ?) () 11—z 11—z
2 1
Integrate. C(z) = 1
(2) (1 —2)? "2
N 2 1
Expand. Cn = [Z"V] In =2(N+1)(Hny1 — 1)

21
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Catalan numbers

How many triangulations of an (N+2)-gon?

To=1

In= Z Tk Tn—1—k + Ono
0<k<N

Th=1

HOBOVO
YRORZ/RORSRESE=NN

m
I
(2

YRORZ/RORSESE=NN

T4=14

24



Catalan numbers

How many gambler’s ruin sequences with N wins?

;

ot

AN
S PASN AN '
AN T /\/\
Tk Th-1-k w=l wel AN 4\4\1\ FAoAEes

4= 4N

+ +
+ +
! +
+ '
'
+ ]
' +
'
o A

+
+
+
'
L
+
'
'
"

To=2 /\
\//\/\/\\/\/\ e /\/\
/\/\/ T3=5 Fod =N
Mt + -t

N

%

In = Z Tk TN—1—k + ONoO
Osk<N R TEE

<
%

Ta=14



Catalan numbers

How many binary trees with N nodes?

e
I\

.
57 2 D 2 TR
Ay By P

2030
0 07

In= Z Tk Tn—1—k + Ono
0<k<N

26



Catalan numbers

How many trees with N+1 nodes?

k+1 nodes

In= Z Tk Tn—1—k + Ono
0<k<N

27



Solving the Catalan recurrence with GFs

Recurrence that holds for all N. In = Z T TN—1—k + Ono
0<k<N
Multiply by zV and sum. I(z) = Z TN = Z Z TeTno1—kZz + 1
N>0 N>00<k<N
Switch order of summation T(z)=1+ Z Z T Tt k2"
k>0 N>k
convolution
(backwards)
Change N to N+k+1 I(z) =1+ Z Z T Tz
k>0 N>0
Distribute. T(z)=1+ Z(Z Tkzk> <Z TNZN>
k>0 N>0

T(z) =14 zT(z)?



Common-sense rule for working with GFs

It is always worthwhile to check your math with your computer.

Known from initial values: I/!\.jf\'\/!\l
T(z)=14+2z+22" 452 +14z" + ... o g {\K\ﬁf)&/}

heck:
Chec T(z) = 1+ 7T(2)?

sage: ZP.<z> = ZZ[]
sage: 1 + z*(1+z+2%zA2+5%zA3+14%2zA4)* (1+2+2%2zA2+5%2zA3+14%2zA4)
196*%zA9 + 140%zA8 + 81*zA7 + 48%zA6 + 42%zA5 + 14%zA4 + 5%zA3 + 2%zA2 + z + 1

T v

not valid because
zA5 and beyond
missing in factors

29



Solving the Catalan recurrence with GFs (continued)

Functional GF equation.

Solve with quadratic formula.

Expand via binomial theorem.

Set coefficients equal

Expand via definition.

Distribute (—2)N among factors.

Substitute (2/1)(4/2)(6/3)... for 2N,

T(z) =1+ 2T(2)*

2T(2) = %(1 V= 47)

1 ;_ N
__5/\; (/\/> (—42)
1 % ]
_§(N+1>(_4)N+
153G -DGE-2) G =N
: (N+1)!
(N+1)!
T 1.3.5---2N—=1)2-4-6---2N
N1 N! 1.2.3... N
1

30
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Exponential generating functions (EGFs)

Definition. P
VAR : : :
A(z) = ZakF is the exponential generating function (EGF)
k>0 )
of the sequence Qaop,ar,az,...,a,...
sequence EGF
zN o
1, 1, 1, 1, 1, m e
N>0
N 2
Z
1, 2, 4, 8, 16, 32, ... > 2 N
N>0
N
z 1
N!— =
1, 1, 2, 6, 24, 120 ... > N1 -2



Operations on EGFs: Binomial convolution

k
z .
If A(z):Zak—! is the EGF of A0y 1,2, ey Ay -
k>0
k
z .
and B(z) :ZbkE is the EGF of bo, b1, by, ..., by, .4
k>0 "
then A(z)B(z) is the EGF of aobo,aob1 +aibo, ..., (k>akbn—k7 e
Proof. zk z"
A(2)B(z) = Zakﬁzbf’ﬁ
k>0 ' n>0
L. . ” n-|—k
Distribute. ZZ Il n'
k>0 n>0
Change nto n—k = ZZ (
k>0 n>k
Multiply and divide by n! _ n z'
oy v -y (k b,
k>0 n>k

. : n z"
Switch order of summation. - Z( Z (k) akbn—k> —

n>0 0<k<n

I\


Bob Sedgewick

Bob Sedgewick
𝚺

Bob Sedgewick
0 ≤ k ≤ n


Solving recurrences with EGFs

Choice of EGF vs. OGF is typically dictated naturally from the problem.

Example.
k

Multiply by z7 /n! and sum on n.

Switch order of summation.

Change n to n+k.

Simplify.

Distribute.

Evaluate and telescope.

Expand.

=2 ()3

fiz) = (3 f (Zﬁ)
k>0
f(z) =

D=-% (1) 5%

n>0 k

D=3 (1) 55

k>0 n>k
n+l<

zz(””) e

k>0 n>0

-yl

k>0n>0

binomial
convolution
(backwards)

n

k z
) (Z m> conver
>0 gence
/ not assured

er(Z/z) _ ez+z/2+z/4+z/8+... _ p27

e

f = 2" Check.

n\ 2k
=% ;)
zk: k) 2k 35
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Counting with generating functions

An alternative (combinatorial) view of GFs

» Define a class of combinatorial obects with associated size function.

 GF is sum over all members of the class.

Example.
P T = set of all binary trees

]

number of internal nodes inte T

Tn = numberof te T with |t|=N
Nz)=) 21 - > TN
Decompose from definition I(z)=1+ Z Z St 4[tr] 41
el tgeT
Distribute -1+ Z(Z ZM) (Z ZHR!)
tterl tre’T

=1+ 27(2)

o

1

\

t. enodes \

| tr

/ tr enodes

38



Combinatorial view of Catalan GF

Each term zV in the GF corresponds to an object of size N.
Collect all the terms with the same exponent to expose counts.
Each term z' Z in a product corresponds to an object of size j + j.

D=1 +z+22+2+2+2+2+2+2 + ...

B T G W = G

-1 4+ 7z 4+ 27 +522 +...

T(z) =1+ 2zT(2)*
—1+z0+z+22+2 4+ .00 +z24+22+22+..)

I T N S

M+ z+2+2+2+2+2+2+72+ ...

A a2y e B g f

zx1x1
2 2 7 x 1 2 x 1
zx1xz zxzx1 zx1xz zx1xz ZXZXZ ZXZ X ZX 7" X

39



Values of parameters ("costs")

are often the object of study in the analysis of algorithms.

How many 1 bits in a random bitstring? (Easy)
01110100100010001110101000001010000

How many leaves in a random binary tree? (Not so easy)

leaf

40



Computing expected costs by counting

An alternative (combinatorial) view of probability
 Define a class of combinatorial obects.
e Model: All objects of size N are equally likely

P = set of all objects in the class
|p| = sizeof pe P
Pxn = number of p € P with |p| =N
cost(p) = cost associated with p
Pnk = number of p € P with |p| = N and cost( p) = k

Pnk/Pn is the probability that the
P/\/k .— cost of on object of size N is k

Expected cost of an object of size N Cn = Zk 5
N

k>0

Z kPl\/k <«—“cumulated cost”
k>0
=~
Def. Cumulated cost is total cost of all objects of a given size.

Expected cost is cumulated cost divided by number of objects.

41



Counting with generating functions: cumulative costs

An alternative (combinatorial) view of GFs
 Define a class of combinatorial obects.
« Model: All objects of size N are equally likely
« GF is sum over all members of the class.

P = set of all objects in the class

|p| = sizeofp e P

Pn = number of p € P with |p| =N
cost(p) = cost associated with p

Counting GF P(z) = Zz'p| = Z PnzN
peP N>0
Cumulative cost GF Clz)= > cost(p)zPl = > " kPryz"
peP N>0 k>0
Average cost [ZN]C(2)/[ZN]P(2)

Bottom line: Reduces computing expectation to GF counting



Warmup: How many 1 bits in a random bitstring?

B is the set of all bitstrings.

|b| is the number of bits in b.

ones(b) is the number of 1 bits in b.
Bn is the # of bitstrings of size N (2N).

Cw is the total number of 1 bits in all bitstrings of size N.

Counting GF.

Cumulative cost GF.

Average # 1 bitsina random
bitstring of length N.

B(z) = Zz|b| = ZZNZN = 1_1—22

beB N>0

C(z) = Z ones(b)z!
= Z (1+2-ones(b)) 2?1+
b’eB
= zB(z) + 2zC(z)
z
(1 —=22)2 2z Z N@2Z)N

[ZN]C(2) _ N2N=T

N
[zN]B(z2) 2N 2

43



Leaves in binary trees

are internal nodes whose children are both external.

Definitions:
Tn is the # of binary trees with N nodes. T,=14
tnk is the # of N-node binary trees with k leaves 1i=>

Cw is the average # of leaves in a random N-node binary tree

h AT,
o & £ 2"
S 2 KX R "N
o 3; R
S e R

Q. How many leaves in a random binary tree?

44



How many leaves in a random binary tree?

T is the set of all binary trees.
|t| is the number of internal nodes in t.
leaves(t) is the number of leaves in t.

Tn is the # of binary trees of size N (Catalan).
Cw is the total number of leaves in all binary trees of size N.

Counting GF. T(z) = Zzlt‘ = Z TnzN

teT N>0
Cumulative cost GF. C(z) = Z leaves(t ik
teT
Average # leaves in a random [ZN]C(Z) o [ZN]C(Z)
N-node binary tree. [ZN] T(2) - TN

Next: Derive a functional equation for the CGFE.

=2 N+

N>0

1
N+ 1

(

2N
N

)

45



CGF functional equation for leaves in binary trees

CGF. C(z) = Z leaves(t)z!!
teT
Decompose from definition. /)\
tr tr
tL nodes tr nodes
leaves(t.) leaves leaves(tr) leaves
i
Cz)=z+ Z Z (leaves(t;) + leaves(tg))z!tI Tl
nel el
=z+z Z leaves(t;)z!"! Z 7% 4 7 Z Zl! Z leaves(tg)z!*!
el tre | nel tre T

=z+2zC(2)T(z)

46



How many leaves in a random binary tree?

CGF.

Decompose from definition.

Compute number of trees Ty,

Catalan numbers

Compute cumulated cost Cy,

Compute average number of leaves.

C(z) = leaves(t)z!"

teT
Cz)=z+ Z Z (leaves(t;) + leaves(tg))z!®I T+
welteT

=7z42zC(2)T(2)

T(Z) = ZT(Z)z — 7 TN = [ZN];?(1 _ m)
1 1 2N

=5 (1= vi—42) =l

C(z) =z+22T(2)C(z) Cn = [ZN]m

- - (2N -2
= = _<N—1>
1—-2zT(z) /1 -4z

Cn/T (\or)  (N+1)-N-N
N N: p— a¥
(V) 2NEN=T)

47
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Exercise 3.20

Solve a linear recurrence. Initial conditions matter.

Exercise 3.20 Solve the recurrence

A ap = 3@n—1 — 3An—2 + An—3 forn > 2withay = a; =0and az = 1.
AN lNTRODUCTa

ANALYSIS
At el iupsiVey  Solve the same recurrence with the initial condition on a; changed to a; = 1.
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Exercise 3.28

The art of expanding GFs.

AN m-rnoDuc'Ea
it

ANALYSIS
E S

Exercise 3.28 Find an expression for
(2] In—
Vi—z ' 1-z
(Hint: Expand (1 — 2)~“ and differentiate with respect to a.)
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Assignments for next lecture

1. Use a symbolic mathematics system

to check initial values for ((2) = z + 2C(2) T(2).

2. Read pages 89-147 in text.

3. Write up solutions to Exercises 3.20 and 3.28.

Mathematica'§ %

/ ANALYSIS
ALGORITHMS
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