
A N A L Y T I C  C O M B I N A T O R I C S
P A R T  O N E 

http://aofa.cs.princeton.edu

3. Generating Functions



A N A L Y T I C  C O M B I N A T O R I C S
P A R T  O N E 

OF

http://aofa.cs.princeton.edu

3. Generating Functions
•OGFs
•Solving recurrences
•Catalan numbers
•EGFs
•Counting with GFs

3a.GFs.OGFs



((a) =
∑

R≥�

HRaR

H�, H�, H�, . . . , HR, . . .

Definition.                           
                                                                is the ordinary generating function (OGF)

of the sequence

Notation.  [zN ]A(z) is “the coefficient of zN in A(z)”                          

Ordinary generating functions

Significance.  Can represent an entire sequence with a single function.

sequence OGF

1, 1, 1, 1, 1, ...

1, 1/2, 1/6, 1/24, ...

∑

5≥�

a5 =
�

�− a

∑

5≥�

a5

5!
= La [zN ]ez = 1/N !

3



Operations on OGFs: Scaling

sequence OGF

1, 1, 1, 1, 1, ...

1, 2, 4, 8, 16, 32, ...

∑

5≥�

a5 =
�

�− a

∑

5≥�

�5a5 =
�

�− �a
[a5]

�
�− �a

= �5

4

H�, H�, H�, . . . , HR, . . .((a) =
∑

R≥�

HRaR

H�, JH�, J�H�, J�H�, . . .

If                                 is the OGF of

then                                    is the OGF of((Ja) =
�

R��

HRJRaR



Operations on OGFs: Addition

sequence OGF

1, 1, 1, 1, 1, ...

1, 2, 4, 8, 16, 32, ...

0, 1, 3, 7, 15, 31, ...

∑

5≥�

a5 =
�

�− a

∑

5≥�

�5a5 =
�

�− �a

�
�− �a

− �
�− a

5

If                                   is the OGF of

and                                is the OGF of

((a) + )(a)

H�, H�, H�, . . . , HR, . . .

I�,I�,I�, . . . ,IR, . . .

((a) =
∑

R≥�

HRaR

)(a) =
∑

R≥�

IRaR

H� + I�, H� + I�, H� + I�, . . . , HR + IR . . .then                           is the OGF of

Example:



OGF sequence

  1, 1, 1, 1, 1, ...

  0, 1, 2, 3, 4, 5, ...

  0, 0, 1, 3, 6, 10, ...

  0, ..., 1, M+1, (M+2)(M+1)/2, ...

  1, M+1, (M+2)(M+1)/2, ...

Operations on OGFs: Differentiation

�
�− a

=
∑

5≥�

a5

a
(�− a)�

=
∑

5≥�

5a5

a�

(�− a)�
=

∑

5≥�

(
5
�

)
a5

a4

(�− a)4+� =
∑

5≥4

(
5
4

)
a5

�
(� � a)4+� =

�

5��

�
5+4
4

�
a5

6

H�, H�, H�, . . . , HR, . . .((a) =
∑

R≥�

HRaR

a(′(a) =
∑

R≥�

RHRaR �, H�, �H�, �H�, . . . , RHR, . . .

If                                 is the OGF of

then                                        is the OGF of



OGF sequence

  1, 1, 1, 1, 1, ...

  0, 1, 1/2, 1/3, 1/4, 1/5, ...

Operations on OGFs: Integration

H�, H�, H�, . . . , HR, . . .((a) =
∑

R≥�

HRaR

�
�− a

=
∑

5≥�

a5

∫ a

�
(([)K[ =

∑

U≥�

HU−�

U
aU �, H�,

H�
�
,
H�
�
, . . . ,

HR−�

R
, . . .

ln
�

�− a
=

∑

5≥�

a5

5

7

If                                 is the OGF of

then                                            is the OGF of

Example:



Operations on OGFs: Partial sum

8

Proof. �
�− a

((a) =
∑

R≥�

aR
∑

U≥�

HUaU

Distribute =
∑

R≥�

∑

U≥�

HUaU+R

Change n to n−k =
∑

R≥�

∑

U≥R

HU−RaU

Switch order of summation. =
∑

U≥�

( ∑

�≤R≤U

HU−R
)
aU

Change k to n−k =
∑

U≥�

( ∑

�≤R≤U

HR
)
aU

If                                 is the OGF of

then                                            is the OGF of

((a) =
∑

R≥�

HRaR H�, H�, H�, . . . , HR, . . .

H�, H� + H�, H� + H� + H�, . . .
�

� � a
((a)



�
� � a

((a) =
�

R��

aR
�

U��

HUaU

=
�

R��

�

U��

HUaU+R

=
�

R��

�

U�R

HU�RaU

=
�

U��

� �

��R�U

HU�R
�
aU

=
�

U��

� �

��R�U

HR
�
aU

OGF sequence

  1, 1, 1, 1, 1, ...

  0, 1, 1/2, 1/3, 1/4, 1/5, ...

  1, 1 + 1/2, 1 + 1/2 + 1/3, ...

Operations on OGFs: Partial sum

�
�− a

=
∑

5≥�

a5

ln
�

�− a
=

∑

5≥�

a5

5

�
� � a

ln
�

� � a
=

�

5��

/5a5

9

If                                 is the OGF of

then                                            is the OGF of

((a) =
∑

R≥�

HRaR H�, H�, H�, . . . , HR, . . .

H�, H� + H�, H� + H� + H�, . . .
�

� � a
((a)

Example:



Operations on OGFs: Convolution

H�, H�, H�, . . . , HR, . . .If                                   is the OGF of((a) =
∑

R≥�

HRaR

then                     is the OGF of

and                                is the OGF of I�,I�,I�, . . . ,IR, . . .)(a) =
�

R��

IRaR

((a))(a) H�I�, H�I� + H�I�, . . . ,
�

��R�U

HRIU�R, . . .

Proof.

10

((a))(a) =
�

R��

HRaR
�

U��

IUaU

Distribute =
�

R��

�

U��

HRIUaU+R

Change n to n−k =
�

R��

�

U�R

HRIU�RaU

Switch order of summation. =
�

U��

� �

��R�U

HRIU�R
�
aU



Operations on OGFs: Convolution

H�, H�, H�, . . . , HR, . . .If                                   is the OGF of((a) =
∑

R≥�

HRaR

then                     is the OGF of

and                                is the OGF of I�,I�,I�, . . . ,IR, . . .)(a) =
�

R��

IRaR

((a))(a) H�I�, H�I� + H�I�, . . . ,
�

��R�U

HRIU�R, . . .

11

OGF sequence

  1, 1, 1, 1, 1, ...

  1, 2, 3, 4, 5, ...

�
�− a

=
∑

5≥�

a5

Example:

�
(�− a)�

=
∑

5≥�

(5+ �)a5



Expanding a GF (summary)

The process of expressing an unknown GF as a power series
(finding the coefficients) is known as expanding the GF.

Techniques we have been using:

Example.

La = �+ a+
a�

�!
+

a�

�!
+

a�

�!
+ . . .

12

Example.

[a5]
�

(�− a)
ln

�
�− a

=
∑

�≤R≤5

�
R
= /5

2. Reduce to known GFs.

M(a) = M(�) + M ′(�)a +
M ′′(�)
�!

a� +
M ′′′(�)
�!

a� +
M ′′′′(�)
�!

a� + . . . .1. Taylor theorem:

ln
�

�− a
�

�− a
then convolve             with  

ln
�

�− a
�

�− a
Integrate             to get  



In-class exercise

Exercise 3.4  Prove that
�

��R�5

/R = (5+ �)(/5+� � �)

ln
�

�− a

[a5]
�

(�− a)�
ln

�
�− a

=
∑

�≤R≤5

�
R
(5+ �− R)

�
(�− a)�

2. Expand GF to find RHS coefficients (convolve                with              )

�
�− a

ln
�

�− a

�
(�− a)�

ln
�

�− a

1. Find GF for LHS (convolve            with                       )
�

�− a

13

= (5+ �)/5 � 5

= (5+ �)(/5+� � �
5+ �

) � 5

= (5+ �)(/5+� � �)

3. Do some math
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Solving recurrences with OGFs

General procedure:

• Make recurrence valid for all n.

• Multiply both sides of the recurrence by zn and sum on n.

• Evaluate the sums to derive an equation satisfied by the OGF.

• Solve the equation to derive an explicit formula for the OGF.

(Use the initial conditions!)

• Expand the OGF to find coefficients.
recurrence

⬅

⬅

sequence

16



Solving recurrences with GFs

Example 4 from previous lecture. 

HU = �HU�� � �HU�� MVY U � � ^P[O H� = � HUK H� = �

HU = �U � �UExpand.

Make recurrence valid for all n. HU = �HU�� � �HU�� + �U�

Solve. ((a) =
a

� � �a+ �a�

Use partial fractions:
      solution must be of the form

((a) =
J�

� � �a
+

J�
� � �a

Solve for coefficients.
J� + J� = �

�J� + �J� = ��

Solution is c0 = 1 and c1=−1 ((a) =
�

� � �a
� �

� � �a

For linear recurrences with constant coefficients, the GF equation is a polynomial, so 
the general procedure is a algorithm.

Multiply by zn and sum on n. ((a) = �a((a) � �a�((a) + a

17



Solving linear recurrences with GFs

Example with multiple roots. 

Make recurrence valid for all n. HU = �HU�� � �HU�� + �HU�� + �U� � �U�

HU = �HU�� � �HU�� + �HU�� MVY U � � ^P[O H� = �, H� = � HUK H� = �

Multiply by zn and sum on n. ((a) = �a((a) � �a�((a) + �a�((a) + a� a�

Solve. ((a) =
a� a�

� � �a+ �a� � �a�

Simplify. ((a) =
a(� � a)

(� � a)(� � �a)�
=

a
(� � �a)�

For linear recurrences with constant coefficients, the GF equation is a polynomial, so 
the general procedure is a algorithm.

18

Expand. multiplicity 3 gives terms
of the form n2βn, etc.

HU = U�U��



Solving linear recurrences with GFs

HU = �HU�� � HU�� + �HU�� MVY U � � ^P[O H� = �, H� = � HUK H� = ��

Make recurrence valid for all n. HU = �HU�� � HU�� + �HU�� + �U� � ��U�

Multiply by zn and sum on n. ((a) = �a((a) � a�((a) + �a�((a) + � � �a

Simplify. ((a) =
� � �a

(� � �a)(� + a�)
=

�
(� + a�)

Solve.
((a) =

� � �a
� � �a+ a� � �a�

Expand. HU =
�
�

(P U + (�P)U) =
�
�
P U(� + (��)U)

((a) =
�
�

� �
� � Pa

+
�

� + Pa

�
Use partial fractions.

  1, 0, -1, 0, 1, 0, -1, 0, 1...

For linear recurrences with constant coefficients, the GF equation is a polynomial, so 
the general procedure is a algorithm.

Example with complex roots. 

19



Solving linear recurrences with GFs (summary)

Solution to

is a linear combination of t terms.

Suppose the roots of the polynomial

are β1, β2,..., βr where the multiplicity of βi is mi so

Solution is

The t constants cij are determined from the initial conditions.

Note: complex roots (and −1) introduce periodic behavior.

HU = _�HU−� + _�HU−� + . . .+ _[HU−[

�− _�a+ _�a� + . . .+ _[a[

T� +T� + . . .+TY = [

∑

�≤Q<T�

J�QU QβU
� +

∑

�≤Q<T�

J�QU QβU
� + . . .+

∑

�≤Q<TY

JYQU QβU
Y t terms

20

Bob Sedgewick
z  −  x  z       −  x  z       −  ... −  x  z  

Bob Sedgewick
t

Bob Sedgewick
t −1

Bob Sedgewick
t

Bob Sedgewick
t −2

Bob Sedgewick
0

Bob Sedgewick
1

Bob Sedgewick
2



Solving the Quicksort recurrence with OGFs

Multiply by zN and sum.
�

5��

5*5a5 =
�

5��

5(5+ �)a5 + �
�

5��

�

��R�5

*R��a5

Multiply both sides by N. 5*5 = 5(5+ �) + �
�

��R�5

*R��

*5 = 5+ � +
�
5

�

��R�5

*R��

Solve the ODE. ((� � a)�*(a))� = (� � a)�*�(a) � �(� � a)*(a)

= (� � a)�
�
*�(a) � �

*(a)
� � a

�
=

�
� � a

Integrate. *(a) =
�

(� � a)�
ln

�
� � a

Expand. *5 = [a5]
�

(� � a)�
ln

�
� � a

= �(5+ �)(/5+� � �)

*�(a) =
�

(� � a)�
+ �

*(a)
� � a

Evaluate sums to get an
ordinary differential equation

��(a) = ��(a)/(� � a)

�(a) = �/(� � a)�

homogeneous equation

solution (integration factor)

21
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T2 = 2

Catalan numbers

How many triangulations of an (N+2)-gon?

T4=14

;5 =
�

��R<5

;R;5���R + �5�

Tk TN−1−k

T0 = 1 T1 = 1

T3 = 5

24



Catalan numbers

How many gambler’s ruin sequences with N wins?

- +-- +-+--

++---

+-+-+--

+-++---

++-+---

++--+--

+++----

Tk TN−1−k

25

T2 = 2

T4=14

T0 = 1 T1 = 1

T3 = 5

;5 =
�

��R<5

;R;5���R + �5�



Catalan numbers

How many binary trees with N nodes?

Tk TN−1−k

26

;5 =
�

��R<5

;R;5���R + �5�

k nodes N−1−k nodes



Catalan numbers

How many trees with N+1 nodes?

Tk TN−1−k

k+1 nodes N−k nodes

27

;5 =
�

��R<5

;R;5���R + �5�



Solving the Catalan recurrence with GFs

Recurrence that holds for all N. ;5 =
∑

�≤R<5

;R;5−�−R + δ5�

Multiply by zN and sum. ;(a) ≡
∑

5≥�

;5a5 =
∑

5≥�

∑

�≤R<5

;R;5−�−Ra5 + �

Switch order of summation ;(a) = �+
∑

R≥�

∑

5>R

;R;5−�−Ra5

Change N to N+k+1 ;(a) = � +
�

R��

�

5��

;R;5a5+R+�

Distribute. ;(a) = � + a
��

R��

;RaR
���

5��

;5a5
�

;(a) = � + a;(a)�

28

convolution
(backwards)



Common-sense rule for working with GFs

It is always worthwhile to check your math with your computer.

Known from initial values:

Check:
;(a) = � + a;(a)�

sage: ZP.<z> = ZZ[]
sage: 1 + z*(1+z+2*z^2+5*z^3+14*z^4)*(1+z+2*z^2+5*z^3+14*z^4)
196*z^9 + 140*z^8 + 81*z^7 + 48*z^6 + 42*z^5 + 14*z^4 + 5*z^3 + 2*z^2 + z + 1

;(a) = � + a + �a� + �a� + ��a� + . . .

✓
not valid because
z^5 and beyond

missing in factors

29



Solving the Catalan recurrence with GFs (continued)

Functional GF equation. ;(a) = � + a;(a)�

Solve with quadratic formula. a;(a) =
�
�

(� ±
�
� � �a)

Expand via binomial theorem. a;(a) = ��
�

�

5��

� �
�
5

�
(��a)5

30

Set coefficients equal ;5 = ��
�

� �
�

5+ �

�
(��)5+�

Expand via de#nition. = ��
�

�
� ( �� � �)( �� � �) . . . ( �� �5)(��)5+�

(5+ �)!

Distribute (−2)N among factors. =
� · � · � · · · (�5� �) · �5

(5+ �)!

Substitute (2/1)(4/2)(6/3)... for  2N. =
�

5+ �
� · � · � · · · (�5� �)

5!

� · � · � · · · �5
� · � · � · · · 5

=
�

5+ �

�
�5
5

�
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Exponential generating functions (EGFs)

Definition.                           
                                                   is the exponential generating function (EGF)

of the sequence H�, H�, H�, . . . , HR, . . .

sequence EGF

1, 1, 1, 1, 1, ...

1, 2, 4, 8, 16, 32, ...

1, 1, 2, 6, 24, 120 ...

∑

5≥�

a5

5!
= La

((a) =
∑

R≥�

HR
aR

R!

∑

5≥�

5!
a5

5!
=

�
�− a

∑

5≥�

�5
a5

5!
= L�a

33



Proof. ((a))(a) =
�

R��

HR
aR

R!

�

U��

IU
aU

U!

Operations on EGFs: Binomial convolution

H�, H�, H�, . . . , HR, . . .If                                   is the EGF of

then                        is  the EGF of

and                                is the EGF of I�,I�,I�, . . . ,IR, . . .

((a))(a) H�I�, H�I� + H�I�, . . . ,

�
U
R

�
HRIU�R, . . .

((a) =
�

R��

HR
aR

R!

)(a) =
�

R��

IR
aR

R!

34

Distribute. =
�

R��

�

U��

HR
R!

IU
U!
aU+R

Change n to n−k =
�

R��

�

U�R

HR
R!

IU�R

(U � R)!
aU

Multiply and divide by n! =
�

R��

�

U�R

�
U
R

�
HRIU�R

aU

U!

Switch order of summation. =
�

U��

� �

��R�U

�
U
R

�
HRIU�R

�aU

U!

Bob Sedgewick

Bob Sedgewick
𝚺

Bob Sedgewick
0 ≤ k ≤ n



Solving recurrences with EGFs

Choice of EGF vs. OGF is typically dictated naturally from the problem.

Example. MU =
�

R

�
U
R

�
MR
�R

Switch order of summation. M(a) =
�

R��

�

U�R

�
U
R

�
MR
�R

aU

U!

M(a) =
�

U��

�

R

�
U
R

�
MR
�R

aU

U!
Multiply by zn /n! and sum on n.

M(a) =
�

R��

�

U��

�
U + R
R

�
MR
�R

aU+R

(U + R)!
Change n to n+k.

Simplify. M(a) =
�

R��

�

U��

MR
(a/�)R

R!
aU

U!

M(a) = LaM(a/�) = La+a/�+a/�+a/�+... = L�aEvaluate and telescope.

convergence
not assured

Expand. MU = �U Check.
�U =

�

R

�
U
R

�
�R

�R

Distribute. M(a) =
��

R��

MR
(a/�)R

R!

���

U��

aU

U!

�

binomial
convolution
(backwards)

35
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Counting with generating functions

An alternative (combinatorial) view of GFs

• Define a class of combinatorial obects with associated size function.

• GF is sum over all members of the class.

=
∑

5≥�

;5a5

= �+ a;(a)�
38

Example. 

;(a) ≡
∑

[∈T
a|[|

Distribute = �+ a
(∑

[3∈;

a|[3|
)(∑

[9∈;

a|[9|
)

 T  ≡ set of all binary trees

 |t | ≡ number of internal nodes in t ∈ T

TN  ≡ number of t ∈ T  with |t | = N

tL tR

tL ●nodes

Decompose from definition ;(a) = �+
∑

[3∈;

∑

[9∈;

a|[3|+|[9|+�

tR ●nodes



Combinatorial view of Catalan GF

Each term zN in the GF corresponds to an object of size N.
Collect all the terms with the same exponent to expose counts.
Each term zi zj in a product corresponds to an object of size i + j.

;(a) = � + a + a� + a� + a� + a� + a� + a� + a� + . . .

= � + a + �a� + �a� + . . .
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= � + a(� + a + a� + a� + . . .)(� + a + a� + a� + . . .)

= � + a + a� + a� + a� + a� + a� + a� + a� + . . .

a � � � a� a � a� � �a � a � aa � � � a� a � a� � �a � � � a a � a � �
a � � � �

;(a) = � + a;(a)�



Values of parameters ("costs")
are often the object of study in the analysis of algorithms.
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leaf

How many leaves in a random binary tree? (Not so easy)

How many 1 bits in a random bitstring? (Easy)

01110100100010001110101000001010000



Computing expected costs by counting

An alternative (combinatorial) view of probability

• Define a class of combinatorial obects.

• Model: All objects of size N are equally likely

41

P � ZL[�VM�HSS�VIQLJ[Z�PU�[OL�JSHZZ

|W| � ZPaL�VM W � P
75 � U\TILY�VM W � P ^P[O |W| = 5

JVZ[(W) � JVZ[�HZZVJPH[LK�^P[O W

75R � U\TILY�VM W � P ^P[O |W| = 5 HUK�JVZ[��W��$�R

Expected cost of an object of size N *5 ≡
∑

R≥�

R
75R
75

PNk/PN is the probability that the
cost of on object of size N is k

Def. Cumulated cost is total cost of all objects of a given size.

Expected cost is cumulated cost divided by number of objects.

=

∑

R≥�

R75R

75

“cumulated cost”



Counting with generating functions: cumulative costs

An alternative (combinatorial) view of GFs

• Define a class of combinatorial obects.

• Model: All objects of size N are equally likely

• GF is sum over all members of the class.

P � ZL[�VM�HSS�VIQLJ[Z�PU�[OL�JSHZZ

|W| � ZPaL�VM W � P
75 � U\TILY�VM W � P ^P[O |W| = 5

JVZ[(W) � JVZ[�HZZVJPH[LK�^P[O W
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Counting GF 7(a) ≡
∑

W∈P
a|W| =

∑

5≥�

75a5

Cumulative cost GF *(a) ≡
∑

W∈P
JVZ[(W)a|W| =

∑

5≥�

∑

R≥�

R75Ra5

Average cost [a5]*(a)/[a5]7(a)

Bottom line: Reduces computing expectation to GF counting



Warmup: How many 1 bits in a random bitstring?

43

Cumulative cost GF. *(a) =
�

I�)
VULZ(I)a|I|

B is the set of all bitstrings.

|b| is the number of bits in b. 

ones(b) is the number of 1 bits in b.

BN is the # of bitstrings of size N (2N).
CN is the total number of 1 bits in all bitstrings of size N.

= a)(a) + �a*(a)

=
a

(�− �a)� �a
(�− �a)�

=
∑

5≥�

5(�a)5

Average # 1 bits in a  random 
bitstring of length N.

[a5]*(a)
[a5])(a)

=
5�5−�

�5
=
5
� ✓

Counting GF. )(a) =
∑

I∈)
a|I| =

∑

5≥�

�5a5 =
�

�− �a

0 b’

1 b’

=
�

I��)

�
� + � · VULZ(I�)

�
a|I�|+�



Leaves in binary trees
are internal nodes whose children are both external.

44
Q. How many leaves in a random binary tree?

t21=2

C2 = 1

C0 = 0

t31=4
t32=1

C3 = 1.2

t41=8
t42=6

C4 = 1.42857

t11=1 

C1 = 1

Definitions:

TN is the # of binary trees with N nodes.

tNk is the # of N-node binary trees with k leaves

CN is the average # of leaves in a random N-node binary tree



How many leaves in a random binary tree?
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T is the set of all binary trees.

|t| is the number of internal nodes in t. 

leaves(t ) is the number of leaves in t.

TN is the # of binary trees of size N (Catalan).
CN is the total number of leaves in all binary trees of size N.

Counting GF. ;(a) =
�

[�T

a|[| =
�

5��

;5a5 =
�

5��

�
5 + �

�
�5
5

�
a5

Cumulative cost GF. *(a) =
�

[�;
SLH]LZ([)a|[|

Average # leaves in a  random 
N-node binary tree. 

[a5]*(a)
[a5];(a)

=
[a5]*(a)
;5

Next: Derive a functional equation for the CGF.



CGF functional equation for leaves in binary trees
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Decompose from de#nition.

tL tR

tL nodes
leaves(tL) leaves

tR nodes
leaves(tR) leaves

CGF. *(a) =
�

[�;
SLH]LZ([)a|[|

*(a) = a +
�

[3�;

�

[9�;

�
SLH]LZ([3) + SLH]LZ([9)

�
a|[3|+|[9|+�

= a+ a
∑

[3∈;
SLH]LZ([3)a|[3|

∑

[9∈;
a|[9| + a

∑

[3∈;
a|[3|

∑

[9∈;
SLH]LZ([9)a|[9|

= a+ �a*(a);(a)



How many leaves in a random binary tree?
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*5 = [a5]
a�

� � �a

=

�
�5� �
5� �

�

*5/;5 =

��5��
5��

�

�
5+�

��5
5

� =
(5+ �) ·5 ·5
�5(�5� �)

� 5/�Compute average number of leaves.

CGF. *(a) =
�

[�;
SLH]LZ([)a|[|

Decompose from de#nition. *(a) = a +
�

[3�;

�

[9�;

�
SLH]LZ([3) + SLH]LZ([9)

�
a|[3|+|[9|+�

= a+ �a*(a);(a)

Compute number of trees TN. ;5 = [a5]
�
�a

(� �
�
� � �a)

=
�

5+ �

�
�5
5

�Catalan numbers
;(a) = a;(a)� � a

=
�
�a

(� �
�
� � �a)

Compute cumulated cost CN. *(a) = a+ �a;(a)*(a)

=
a

� � �a;(a)
=

a�
� � �a



A N A L Y T I C  C O M B I N A T O R I C S
P A R T  O N E 
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3. Generating Functions
•OGFs
•Solving recurrences
•Catalan numbers
•EGFs
•Counting with GFs

3e.GFs.counting



Exercise 3.20

Solve a linear recurrence. Initial conditions matter.
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Exercise 3.28

The art of expanding GFs.
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Assignments for next lecture

1. Use a symbolic mathematics system

    to check initial values for  C(z) = z + 2C(z)T(z).

2. Read pages 89-147 in text.

    

3. Write up solutions to Exercises 3.20 and 3.28.
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