2. Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
What is a recurrence?

Def. A *recurrence* is an equation that recursively defines a sequence.

Familiar example 1: *Fibonacci numbers*

recurrence

\[F_N = F_{N-1} + F_{N-2} \quad \text{for } N \geq 2 \text{ with } F_0 = 0 \text{ and } F_1 = 1 \]

sequence

\[0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \]

Q. Simple formula for sequence (function of \(N \))?
What is a recurrence?

Recurrences directly model costs in programs.

Familiar example 2: *Quicksort* (see lecture 1)

recurrence

\[
C_N = N + 1 + \sum_{0 \leq k \leq N-1} \frac{1}{N}(C_k + C_{N-k-1})
\]

for \(N \geq 1\) with \(C_0 = 0\)

sequence

0, 2, 5, 8 2/3, 12 5/6, 17 2/5, ...

program

```java
public class Quick {
    private static int partition(Comparable[] a, int lo, int hi) {
        int i = lo, j = hi+1;
        while (true) {
            while (less(a[++i], a[lo])) if (i == hi) break;
            while (less(a[lo], a[--j])) if (j == lo) break;
            if (i >= j) break;
            exch(a, i, j);
        }
        exch(a, lo, j);
        return j;
    }

    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
    }
}
```
Common-sense rule for solving any recurrence

Use your computer to compute values. \(F_N = F_{N-1} + F_{N-2} \) for \(N \geq 2 \) with \(F_0 = 0 \) and \(F_1 = 1 \)

```java
public static void F(int N) {
    if (N == 0) return 0;
    if (N == 1) return 1;
    return F(N-1) + F(N-2);
}
```

Use a recursive program?

NO, NO, NO: Takes exponential time!

Instead, save all values in an array.

```java
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (N == 1) return 1;
for (int i = 2; i <= 50; i++)
    F[i] = F[i-1] + F[i-2];
```
Common-sense starting point for solving any recurrence

Use your computer to compute initial values.

Common-sense starting point for solving any recurrence

Use your computer to compute initial values (modern approach).

Ex. 1: Fibonacci \[F_N = F_{N-1} + F_{N-2} \] with \(F_0 = 0 \) and \(F_1 = 1 \)

Fib.java

```java
public class Fib implements Sequence {
    private final double[] F;

    public Fib(int maxN) {
        F = new double[maxN+1];
        F[0] = 0; F[1] = 1;
        for (int N = 2; N <= maxN; N++)
            F[N] = F[N-1] + F[N-2];
    }

    public double eval(int N) {
        return F[N];
    }

    public static void main(String[] args) {
        int maxN = Integer.parseInt(args[0]);
        Fib F = new Fib(maxN);
        for (int i = 0; i < maxN; i++)
            StdOut.println(F.eval(i));
    }
}
```

Sequence.java

```java
public interface Sequence {
    public double eval(int N);
}
```

Compute all values in the constructor

Hasse Diagram

- \(F_0 = 0 \)
- \(F_1 = 1 \)
- \(F_N = F_{N-1} + F_{N-2} \)

% java Fib 15

0.0
1.0
1.0
2.0
3.0
5.0
8.0
13.0
21.0
34.0
55.0
89.0
144.0
233.0
377.0
Common-sense starting point for solving any recurrence

Ex. 2: Quicksort

\[NC_N = (N + 1)C_{N-1} + 2N \]

QuickSeq.java

```java
public class QuickSeq implements Sequence {
    private final double[] c;

    public QuickSeq(int maxN) {
        c = new double[maxN+1];
        c[0] = 0;
        for (int N = 1; N <= maxN; N++)
            c[N] = (N+1)*c[N-1]/N + 2;
    }

    public double eval(int N) {
        return c[N];
    }

    public static void main(String[] args) {
        // Similar to Fib.java.
    }
}
```

% java QuickSeq 15

<table>
<thead>
<tr>
<th>(N)</th>
<th>(C_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>1</td>
<td>2.000000</td>
</tr>
<tr>
<td>2</td>
<td>5.000000</td>
</tr>
<tr>
<td>3</td>
<td>8.666667</td>
</tr>
<tr>
<td>4</td>
<td>12.833333</td>
</tr>
<tr>
<td>5</td>
<td>17.400000</td>
</tr>
<tr>
<td>6</td>
<td>22.300000</td>
</tr>
<tr>
<td>7</td>
<td>27.485714</td>
</tr>
<tr>
<td>8</td>
<td>32.921429</td>
</tr>
<tr>
<td>9</td>
<td>38.579365</td>
</tr>
<tr>
<td>10</td>
<td>44.437302</td>
</tr>
<tr>
<td>11</td>
<td>50.477056</td>
</tr>
<tr>
<td>12</td>
<td>56.683478</td>
</tr>
<tr>
<td>13</td>
<td>63.043745</td>
</tr>
<tr>
<td>14</td>
<td>69.546870</td>
</tr>
</tbody>
</table>
Common-sense starting point for solving any recurrence

Use your computer to plot initial values.

```
public class Values {
    public static void show(Sequence f, int maxN) {
        double max = 0;
        for (int N = 0; N < maxN; N++)
            if (f.eval(N) > max) max = f.eval(N);
        for (int N = 0; N < maxN; N++)
        {  
            double x = 1.0*N/maxN;
            double y = 1.0*f.eval(N)/max;
            StdDraw.filledCircle(x, y, .002);
        }
    
    StdDraw.show();
}
```

```
public class QuickSeq implements Sequence {
    // Implementation as above.
    public static void main(String[] args) {
        int maxN = Integer.parseInt(args[0]);
        QuickSeq q = new QuickSeq(maxN);
        Values.show(q, maxN);
    }
}
```
2. Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
2. Recurrences

- Computing values
- **Telescoping**
- Types of recurrences
- Mergesort
- Master Theorem
Telescoping a (linear first-order) recurrence

Linear first-order recurrences telescope to a sum.

Example 1.

\[a_n = a_{n-1} + n \quad \text{with} \quad a_0 = 0 \]

Apply equation for \(n-1 \)

\[= a_{n-2} + (n - 1) + n \]

Do it again

\[= a_{n-3} + (n - 2) + (n - 1) + n \]

Continue, leaving a sum

\[= a_0 + \sum_{1 \leq k \leq n} k \]

Evaluate sum

\[= \frac{(n + 1)n}{2} \]

Check.

\[\frac{(n + 1)n}{2} = \frac{n(n - 1)}{2} + n \]

Challenge: Need to be able to evaluate the sum.
Elementary discrete sums

<table>
<thead>
<tr>
<th>geometric series</th>
<th>$\sum_{0 \leq k < n} x^k = \frac{1 - x^n}{1 - x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic series</td>
<td>$\sum_{0 \leq k < n} k = \frac{n(n - 1)}{2} = \binom{n}{2}$</td>
</tr>
<tr>
<td>binomial (upper)</td>
<td>$\sum_{0 \leq k \leq n} \binom{k}{m} = \binom{n + 1}{m + 1}$</td>
</tr>
<tr>
<td>binomial theorem</td>
<td>$\sum_{0 \leq k \leq n} \binom{n}{k} x^k y^{n-k} = (x + y)^n$</td>
</tr>
<tr>
<td>Harmonic numbers</td>
<td>$\sum_{1 \leq k \leq n} \frac{1}{k} = H_n$</td>
</tr>
<tr>
<td>Vandermonde convolution</td>
<td>$\sum_{0 \leq k \leq n} \binom{n}{k} \binom{m}{t-k} = \binom{n+m}{t}$</td>
</tr>
</tbody>
</table>

see Knuth volume 1 for many more
Telescoping a (linear first-order) recurrence (continued)

When coefficients are not 1, multiply/divide by a *summation factor.*

Example 2.

\[a_n = 2a_{n-1} + 2^n \quad \text{with} \quad a_0 = 0 \]

Divide by \(2^n\)

\[\frac{a_n}{2^n} = \frac{a_{n-1}}{2^{n-1}} + 1 \]

Telescope to a sum

\[\frac{a_n}{2^n} = \sum_{1 \leq k \leq n} 1 = n \]

\[a_n = n2^n \]

Check.

\[n2^n = 2(n - 1)2^{n-1} + 2^n \]

Challenge: How do we find the summation factor?
Telescoping a (linear first-order) recurrence (continued)

Q. What's the summation factor for \(a_n = x_n a_{n-1} + \ldots ? \)

A. Divide by \(x_n x_{n-1} x_{n-2} \ldots x_1 \)

Example 3.

\[a_n = \left(1 + \frac{1}{n}\right)a_{n-1} + 2 \quad \text{for } n > 0 \text{ with } a_0 = 0 \]

Divide by \(n+1 \)

\[\frac{a_n}{n+1} = \frac{a_{n-1}}{n} + \frac{2}{n+1} \]

Telescope

\[= 2 \sum_{1 \leq k \leq n} \frac{1}{k+1} = 2H_{n+1} - 1 \]

\[a_n = 2(n+1)(H_{n+1} - 1) \]

Challenge: Still need to be able to evaluate sums.
In-class exercise 1.

Verify the solution for Example 3.

Check initial values

\[a_n = \left(1 + \frac{1}{n}\right)a_{n-1} + 2 \quad \text{for } n > 0 \text{ with } a_0 = 0 \]

\[
\begin{align*}
a_1 &= 2a_0 + 2 = 2 \\
a_2 &= \frac{3}{2}a_1 + 2 = 5 \\
a_3 &= \frac{4}{3}a_2 + 2 = 26/3
\end{align*}
\]

Proof

\[
\begin{align*}
\left(1 + \frac{1}{n}\right)2n(H_n - 1) + 2 &= 2(n + 1)(H_n - 1) + 2 \\
&= 2(n + 1)(H_{n+1} - 1)
\end{align*}
\]
In-class exercise 2.

Solve this recurrence:

\[na_n = (n - 2)a_{n-1} + 2 \quad \text{for } n > 1 \text{ with } a_1 = 1 \]

Hard way:

summation factor:

\[\frac{n - 2}{n} \frac{n - 3}{n - 1} \frac{n - 4}{n - 2} \ldots = \frac{1}{n(n - 1)} \]

Easy way:

\[2a_2 = 2 \quad \text{so} \quad a_2 = 1 \]

therefore \quad a_n = 1

WHY?
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
Types of recurrences

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Nonlinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>First order</td>
<td>$a_n = na_{n-1} - 1$</td>
<td>$a_n = 1/(1 + a_{n-1})$</td>
</tr>
<tr>
<td>Second order</td>
<td>$a_n = a_{n-1} + 2a_{n-2}$</td>
<td>$a_n = a_{n-1}a_{n-2} + \sqrt{a_{n-2}}$</td>
</tr>
<tr>
<td>Variable coefficients</td>
<td>$a_n = na_{n-1} + (n - 1)a_{n-2} + 1$</td>
<td></td>
</tr>
<tr>
<td>Higher order</td>
<td>$a_n = f(a_{n-1}, a_{n-2}, \ldots, a_{n-t})$</td>
<td></td>
</tr>
<tr>
<td>Full history</td>
<td>$a_n = n + a_{n-1} + a_{n-2} \ldots + a_1$</td>
<td></td>
</tr>
<tr>
<td>Divide-and-conquer</td>
<td>$a_n = a_{\lfloor n/2 \rfloor} + a_{\lceil n/2 \rceil} + n$</td>
<td></td>
</tr>
</tbody>
</table>
Example. (Newton’s method)

\[c_N = \frac{1}{2} \left(c_{N-1} + \frac{2}{c_{N-1}} \right) \]

[Typical in scientific computing]

SqrtTwo.java

```java
public class SqrtTwo implements Sequence {
    private final double[] c;

    public SqrtTwo(int maxN) {
        c = new double[maxN+1];
        c[0] = 1;
        for (int N = 1; N <= maxN; N++)
            c[N] = (c[N-1] + 2/c[N-1])/2;
    }

    public double eval(int N) { return c[N]; }

    public static void main(String[] args) {
        int maxN = Integer.parseInt(args[0]);
        SqrtTwo test = new SqrtTwo(maxN);
        for (int i = 0; i < maxN; i++)
            StdOut.println(test.eval(i));
    }
}
```

quadratic convergence: number of significant digits doubles for each iteration

% java SqrtTwo 10
1.0
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.414213562373095
1.414213562373095
1.414213562373095
1.414213562373095
1.414213562373095
1.414213562373095
Higher-order linear recurrences

[Stay tuned for systematic solution using generating functions (next lecture)]

Example 4.

\[a_n = 5a_{n-1} - 6a_{n-2} \quad \text{for } n \geq 2 \text{ with } a_0 = 0 \text{ and } a_1 = 1 \]

Postulate that \(a_n = x^n \)
\[x^n = 5x^{n-1} - 6x^{n-2} \]

Divide by \(x^{n-2} \)
\[x^2 - 5x + 6 = 0 \]

Factor
\[(x - 2)(x - 3) = 0 \]

Form of solution must be
\[a_n = c_03^n + c_12^n \]

Use initial conditions to solve for coefficients
\[a_0 = 0 = c_0 + c_1 \]
\[a_1 = 1 = 3c_0 + 2c_1 \]

Solution is \(c_0 = 1 \) and \(c_1 = -1 \)
\[a_n = 3^n - 2^n \]
Higher-order linear recurrences

[Stay tuned for systematic solution using generating functions (next lecture)]

Example 5. Fibonacci numbers

\[a_n = a_{n-1} + a_{n-2} \quad \text{for } n \geq 2 \text{ with } a_0 = 0 \text{ and } a_1 = 1 \]

Postulate that \(a_n = x^n \)

Divide by \(x^{n-2} \)

Factor

Form of solution must be

Use initial conditions to solve for coefficients

Solution

\[\phi = \frac{1 + \sqrt{5}}{2} \]
\[\hat{\phi} = \frac{1 - \sqrt{5}}{2} \]

Note dependence on initial conditions
Higher-order linear recurrences (continued)

Procedure amounts to an *algorithm*.

Multiple roots? Add $n\alpha^n$ terms (see text)

Example 5. Fibonacci numbers

\[a_n = a_{n-1} + a_{n-2} \quad \text{for } n \geq 2 \text{ with } a_0 = 0 \text{ and } a_1 = 1 \]

Postulate that $a_n = x^n$

\[x^n = x^{n-1} + x^{n-2} \]

Divide by x^{n-2}

\[x^2 - x - 1 = 0 \]

Factor

\[(x - \phi)(x - \hat{\phi}) = 0 \]

Form of solution must be

\[a_n = c_0\phi^n + c_1\hat{\phi}^n \]

Use initial conditions to solve for coefficients

\begin{align*}
 a_0 &= 0 = c_0 + c_1 \\
 a_1 &= 1 = \phi c_0 + \hat{\phi} c_1
\end{align*}

Solution

\[a_n = \frac{\phi^n}{\sqrt{5}} - \frac{\hat{\phi}^n}{\sqrt{5}} \]

\[
\phi = \frac{1 + \sqrt{5}}{2} \\
\hat{\phi} = \frac{1 - \sqrt{5}}{2}
\]

Note dependence on initial conditions

Need to compute roots? Use symbolic math package.

```
sage: realpoly.<z> = PolynomialRing(CC)
sage: factor(z^2-z-1)
(z - 1.618033988749895) * (z + 0.618033988749895)
```
Divide-and-conquer recurrences

Divide and conquer is an effective technique in algorithm design.

Recursive programs map directly to recurrences.

Classic examples:
- Binary search
- Mergesort
- Batcher network
- Karatsuba multiplication
- Strassen matrix multiplication
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
Warmup: binary search

Everyone’s first divide-and-conquer algorithm

```java
// Precondition: array a[] is sorted.
public static int rank(int key, int[] a)
{
    int lo = 0;
    int hi = a.length - 1;
    while (lo <= hi)
    {
        // Key is in a[lo..hi] or not present.
        int mid = lo + (hi - lo) / 2;
        if (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
}
```

Number of compares in the worst case

\[B_N = B_{\lfloor N/2 \rfloor} + 1 \quad \text{for } N > 1 \text{ with } B_1 = 1 \]
Analysis of binary search (easy case)

\[B_N = B_{\lfloor N/2 \rfloor} + 1 \quad \text{for } N > 1 \text{ with } B_1 = 1 \]

Exact solution for \(N = 2^n \).

\[a_n \equiv B_{2^n} \]

\[a_n = a_{n-1} + 1 \quad \text{for } n > 0 \text{ with } a_0 = 1 \]

Telescope to a sum

\[a_n = \sum_{1 \leq k \leq n} 1 = n \]

\[B_N = \lg N \quad \text{when } N \text{ is a power of 2} \]

Check. \(\lg N = \lg (N/2) + 1 \)
Analysis of binary search (general case)

Easy by correspondence with binary numbers

Define B_N to be the number of bits in the binary representation of N.

- $B_1 = 1$.
- Removing the rightmost bit of N gives $\lfloor N/2 \rfloor$.

Therefore $B_N = B_{\lfloor N/2 \rfloor} + 1$ for $N > 1$ with $B_1 = 1$

same recurrence as for binary search

Theorem. $B_N = \lfloor \log_2 N \rfloor + 1$

Proof. Immediate by definition of $\lfloor \rfloor$.

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>1000</td>
<td>1001</td>
</tr>
<tr>
<td>$\log_2 N$</td>
<td>0</td>
<td>1.0</td>
<td>1.58...</td>
<td>2.0</td>
<td>2.32...</td>
<td>2.58...</td>
<td>2.80...</td>
<td>3</td>
<td>3.16...</td>
</tr>
<tr>
<td>$\lfloor \log_2 N \rfloor$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$\lfloor \log_2 N \rfloor + 1$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Mergesort

Everyone’s second divide-and-conquer algorithm

```java
public class Merge {
    ...
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid + 1, hi);
        merge(a, aux, lo, mid, hi);
    }
    ...
}
```

For simplicity, assume merge implementation uses N compares

Number of compares for sort:

$$C_N = C_{[N/2]} + C_{[N/2]} + N \quad \text{for } N > 1 \text{ with } C_1 = 1$$
Analysis of mergesort (easy case)

Number of compares for sort: \[C_N = C_{[N/2]} + C_{[N/2]} + N \quad \text{for } N > 1 \quad \text{with} \quad C_1 = 1 \]

Already solved for \(N = 2^n \)

Example 2.

\[a_n = 2a_{n-1} + 2^n \quad \text{with} \quad a_0 = 0 \]

Divide by \(2^n \)

\[\frac{a_n}{2^n} = \frac{a_{n-1}}{2^{n-1}} + 1 \]

Telescope to a sum

\[\frac{a_n}{2^n} = \sum_{1 \leq k \leq n} 1 = n \]

\[a_n = n2^n \]

Solution: \[C_N = N\lg N \quad \text{when } N \text{ is a power of } 2 \]
Analysis of mergesort (general case)

Number of compares for sort: \(C_N = C_{[N/2]} + C_{[N/2]} + N \) for \(N > 1 \) with \(C_1 = 1 \)

Solution: \(C_N = N\lg N \) when \(N \) is a power of 2

Q. For quicksort, the number of compares is \(\sim 2N\ln N - 2(1 - \gamma)N \)

Is the number of compares for mergesort \(\sim N\lg N + \alpha N \) for some constant \(\alpha \)?

A. NO!
Coefficient of the linear term for mergesort

```java
public class MergeLinearTerm implements Sequence {
    private final double[] c;

    public MergeLinearTerm(int maxN) {
        c = new double[maxN+1];
        c[0] = 0;
        for (int N = 1; N <= maxN; N++)
            c[N] = N + c[N/2] + c[N-(N/2)];
        for (int N = 1; N <= maxN; N++)
            c[N] -= N*Math.log(N)/Math.log(2) + N;
    }

    public double eval(int N) {
        return c[N];
    }

    public static void main(String[] args) {
        int maxN = Integer.parseInt(args[0]);
        MergeLinearTerm M = new MergeLinearTerm(maxN);
        Values.show(M, maxN);
    }
}
```

% java MergeLinearTerm 512
Analysis of mergesort (general case)

Number of compares for sort:

\[C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N \quad \text{for } N > 1 \text{ with } C_1 = 1 \]

- **Same formula for** \(N+1 \). \[C_{N+1} = C_{\lfloor (N+1)/2 \rfloor} + C_{\lceil (N+1)/2 \rceil} + N + 1 \]
 \[= C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil + 1} + N + 1 \]

- **Subtract.** \[C_{N+1} - C_N = C_{\lceil N/2 \rceil + 1} - C_{\lfloor N/2 \rfloor} + 1 \]

- **Define** \(D_N = C_{N+1} - C_N \).
 \[D_N = D_{\lfloor N/2 \rfloor} + 1 \]

- **Solve as for binary search.**
 \[D_N = \lceil \log N \rceil + 2 \]

- **Telescope.**
 \[C_N = N - 1 + \sum_{1 \leq k < N} \left(\lfloor \log k \rfloor + 1 \right) \]

Theorem. \(C_N = N - 1 + \text{number of bits in binary representation of numbers } < N \)
Combinatorial correspondence

\(S_N = \text{number of bits in the binary rep. of all numbers } < N \)

\[
\begin{array}{cccc}
1 & S_{\lceil N/2 \rceil} & S_{\lceil N/2 \rceil} & N - 1 \\
10 & 1 & 1 & 1 \\
11 & 1 & 10 & 10 \\
100 & 100 & 100 & 100 \\
101 & 101 & 101 & 101 \\
110 & 110 & 110 & 110 \\
111 & 111 & 111 & 111 \\
1000 & 1000 & 1000 & 1000 \\
1001 & 1001 & 1001 & 1001 \\
1010 & 1010 & 1010 & 1010 \\
1011 & 1011 & 1011 & 1011 \\
1100 & 1100 & 1100 & 1100 \\
1101 & 1101 & 1101 & 1101 \\
1110 & 1110 & 1110 & 1110 \\
\end{array}
\]

\[S_N = S_{\lceil N/2 \rceil} + S_{\lceil N/2 \rceil} + N - 1 \]

Same recurrence as mergesort (except for \(-1\)): \(C_N = S_N + N - 1 \)
Number of bits in all numbers $< N$ (alternate view)

$$S_N = N([\log_2 N] + 1) - \sum_{0 \leq k \leq [\log_2 N]} 2^k$$

$$= N[\log_2 N] - 2^{[\log_2 N]+1} + N + 1$$

$$C_N = S_N + N - 1$$

$$= N[\log_2 N] - 2^{[\log_2 N]+1} + 2N$$

Theorem. Number of compares for mergesort is $N[\log_2 N] - 2^{[\log_2 N]+1} + 2N$
Analysis of mergesort (summary)

Number of compares for sort: \(C_N = C_{\lfloor N/2 \rfloor} + C_{\lfloor N/2 \rfloor} + N \) for \(N > 1 \) with \(C_1 = 1 \)

Solution: \(C_N = N \lfloor \lg N \rfloor \) when \(N \) is a power of 2

Theorem. Number of compares for mergesort is \(N \lfloor \lg N \rfloor - 2^{\lfloor \lg N \rfloor + 1} + 2N \)

Alternate formulation (Knuth). \(C_N = N \lg N + N\alpha(N) \)

\(\alpha(N) \)

\(\lfloor x \rfloor \)

Notation: \(\lfloor \lg N \rfloor = \lg N - \{\lg N\} \)

\[
1 - \{\lg N\} \\
+ \\
1 - 2^{1-\{\lg N\}} \\
= \\
2 - \{\lg N\} - 2^{1-\{\lg N\}}
\]

\(N\alpha(N) \)
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

http://aofa.cs.princeton.edu
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
Divide-and-conquer algorithms

Suppose that an algorithm attacks a problem of size \(N \) by

- Dividing into \(\alpha \) parts of size about \(N/\beta \).
- Solving recursively.
- Combining solutions with extra cost \(\Theta(N^\gamma(\log N)^\delta) \)

\[C_N = 2C_{N/2} + N \]

\[C_N = 2C_{N/2} + N\log N \]

\[C_N = 3C_{N/2} + N \]

\[C_N = 7C_{N/2} + N \]

only valid when \(N \) is a power of 2
"Master Theorem" for divide-and-conquer algorithms

Suppose that an algorithm attacks a problem of size n by dividing into α parts of size about n/β with extra cost $\Theta(n^\gamma (\log n)^\delta)$.

Theorem. The solution to the recurrence
\[
a_n = a_{n/\beta + O(1)} + a_{n/\beta + O(1)} + \cdots + a_{n/\beta + O(1)} + \Theta(n^\gamma (\log n)^\delta)
\]
is given by
\[
a_n = \Theta(n^\gamma (\log n)^\delta) \quad \text{when } \gamma < \log_\beta \alpha
\]
\[
a_n = \Theta(n^\gamma (\log n)^{\delta+1}) \quad \text{when } \gamma = \log_\beta \alpha
\]
\[
a_n = \Theta(n^{\log_\beta \alpha}) \quad \text{when } \gamma > \log_\beta \alpha
\]

Example: $\alpha = 3$

- $\beta = 2$
- $\beta = 3$
- $\beta = 4$
Typical “Master Theorem” applications

Suppose that an algorithm attacks a problem of size N by

- Dividing into α parts of size about N/β.
- Solving recursively.
- Combining solutions with extra cost $\Theta(N^\gamma \log N^\delta)$

Master Theorem

\[
\begin{align*}
 a_n &= \Theta(n^\gamma \log n)^\delta & \text{when } \gamma < \log_\beta \alpha \\
 a_n &= \Theta(n^\gamma \log n)^{\delta+1} & \text{when } \gamma = \log_\beta \alpha \\
 a_n &= \Theta(n^{\log_\beta \alpha}) & \text{when } \gamma > \log_\beta \alpha
\end{align*}
\]

Example 1 (mergesort): $\alpha = 2$, $\beta = 2$, $\gamma = 1$, $\delta = 0$

$\Theta(N \log N)$

Example 2 (Batcher network): $\alpha = 2$, $\beta = 2$, $\gamma = 1$, $\delta = 1$

$\Theta(N (\log N)^2)$

Example 3 (Karatsuba multiplication): $\alpha = 3$, $\beta = 2$, $\gamma = 1$, $\delta = 0$

$\Theta(N^{\log_2 3}) = \Theta(N^{1.585...})$

Example 4 (Strassen matrix multiply): $\alpha = 7$, $\beta = 2$, $\gamma = 1$, $\delta = 0$

$\Theta(N^{\log_2 7}) = \Theta(N^{2.807...})$
Versions of the “Master Theorem”

Suppose that an algorithm attacks a problem of size N by

- Dividing into α parts of size about N/β.
- Solving recursively.
- Combining solutions with extra cost $\Theta(N^\gamma \log N^\delta)$

1. **Precise** results are available for certain applications in the analysis of algorithms.

2. **General** results are available for proofs in the theory of algorithms.

3. **A full solution** using analytic combinatorics was derived in 2011 by Szpankowski and Drmota.

see “A Master Theorem for Divide-and-Conquer Recurrences” by Szpankowski and Drmota (SODA 2011).
Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem
Exercise 2.17

Percentage of three nodes at the bottom level of a 2-3 tree?

Exercise 2.17 [Yao] (“Fringe analysis of 2–3 trees”) Solve the recurrence

\[A_N = A_{N-1} - \frac{2A_{N-1}}{N} + 2 \left(1 - \frac{2A_{N-1}}{N} \right) \quad \text{for } N > 0 \text{ with } A_0 = 0. \]

This recurrence describes the following random process: A set of \(N \) elements collect into “2-nodes” and “3-nodes.” At each step each 2-node is likely to turn into a 3-node with probability \(2/N \) and each 3-node is likely to turn into two 2-nodes with probability \(3/N \). What is the average number of 2-nodes after \(N \) steps?
Exercise 2.69

Details of divide-by-three and conquer?

Exercise 2.69 Plot the periodic part of the solution to the recurrence

$$a_N = 3a_{[N/3]} + N$$ for $N > 3$ with $a_1 = a_2 = a_3 = 1$

for $1 \leq N \leq 972$.
Assignments for next lecture

1. Read pages 41-86 in text.

2. Write up solution to Ex. 2.17.

3. Set up StdDraw from Algs book site

4. Do Exercise 2.69.
2. Recurrences