ANALYTIC COMBINATORICS
PART ONE

ANALYSIS 2. Recurrences
ALGORITHMS

http://aofa.cs.princeton.edu

ANALYTIC COMBINATORICS
PART ONE

2. Recurrences

e Computing values

AN INTRODUCTIO N=

e Telescoping

ANALYSIS

A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

What is a recurrence?

Def. A recurrence is an equation that recursively defines a sequence.

Familiar example 1: Fibonacci numbers

recurrence

Fny = Fn—1 + Fy—o for N> 2 with Fp =0and F; = 1

\ MUST specify

for all N with

sequence initial conditions

o, 1, 1, 2, 3, 5, 8, 13, 21,

Q. Simple formula for sequence (function of N)?

What is a recurrence?

Recurrences directly model costs in programs.

Familiar example 2: Quicksort (see lecture 1)

recurrence program

public class Quick

1
— 1 E — L {
(jA/ N T ﬁJ((jk - (:A/ k 1> private static int partition(Comparable[] a, int lo, int hi)

0<k<N-—1 {
int i = lo, j = hi+l;

for N> 1 with Co =0 ¥hi1e (true)

while (less(a[++i], a[lo])) if (i == hi) break;
while (less(a[lo], a[--j1)) if (j == T1o) break;
if (i >= j) break;
sequence exch(a, i, 3);

} :
0, 2, 5, 8 2/3, 12 5/6, 17 2/5,... exch(a, To, 3J;

return j;

}
private static void sort(Comparable[] a, int lo, int hi)

if (hi <= 10) return;

int j = partition(a, lo, hi);
sort(a, lo, j-1);

sort(a, j+1, hi);

Common-sense rule for solving any recurrence

Use your computer to compute values. Fy = Fy_1 + Fy—> for N> 2 with Fp =0and F; =1

public static void F(int N)

Use a recursive program? if (N == 0) return O; X
if (N == 1) return 1;
return F(N-1) + F(N-2);

} F(50)
/ \
F(49) F(48)
— T
NO, NO, NO: Takes exponential time! F(48) F(47) F(47) F (46)
VRN /N VRN /N

F(47) F(46) F(46) F(45) F(46) F(45) F(45) F(44)

/N /N /N /N /N /N /N /N
Top of recursion tree for naive Fibonacci function

Tong[] F = new Tong[51];
F[O0] = 0; F[1] = 1;
if (N == 1) return 1; V/
for (int i = 2; i <= 50; 1i++)
F[i] = F[i-1] + F[i-2];

Instead, save all values in an array.

Common-sense starting point for solving any recurrence

Use your computer to compute initial values.

First step: Download "standard model" from Algorithms, 4th edition booksite.

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne 2

Algorithn

ALGORITHMS, 4TH EDITION
Fundamentals

Sorting

Searching

Graphs

Strings

G| G 6| &2 52| &

Context

ReLaTeD BooksiTes

ANALYSIS
ALGORITHMS

References

Online Course

Lecture Slides

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Amazon - Pearson - InformIT] surveys the most
important algorithms and data structures in use today. The textbook is organized into six chapters:

Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our
programming model.

Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort, and quicksort. It also includes a binary heap
implementation of a priority queue.

Chapter 3: Searching describes several classic symbol table implementations, including binary search trees, red-black trees, and hash tables.

Chapter 4: Graphs surveys the most important graph processing problems, including depth-first search, breadth-first search, minimum
spanning trees, and shortest paths.

Chapter 5: Strings investigates specialized algorithms for string processing, including radix sorting, substring search, tries, regular expressions,
and data compression.

Chapter 6: Context highlights connections to systems programming, scientific computing, commercial applications, operations research, and
intractability.

Applications to science, engineering, and industry are a key feature of the text. We motivate each algorithm that we address by examining its
impact on specific applications.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while
programming and while browsing the web); the textbook is for your use when initially learning new material and when reinforcing your
understanding of that material (for example, when reviewing for an exam). The booksite consists of the following elements:

« Excerpts. A condensed version of the text narrative, for reference while online.
e Java code. The algorithms and clients in this textbook.

* Exercise solutions. Solutions to selected exercises.

To get started. Pere are instructions for setting up our recommended Java programming environment [Mac OS X - Windows - Linux].

http://algs4.cs.princeton.edu

StdIn

StdOut

StdDraw

StdRandom

Standard Input
Standard Output
Standard Drawings

Random Numbers

(Several other libraries)

Common-sense starting point for solving any recurrence

Use your computer to compute initial values (modern approach).
Ex. 1: Fibonacci Fn = Fn—1+ Fny—2 with Fp=0and F; =1
Fib.java public class Fib implements Sequence

private final double[] F;

public Fib(int maxN)

{ Compute all values
F = new double[maxN+1]; intgzconsUUCUN

F[O] = 0; F[1]= 1;
for (int N = 2; N <= maxN; N++)
FIN] = F[N-1]1 + F[N-2];
}

public double eval(int N)
{ return F[N]; }

public static void main(String[] args)

{
int maxN = Integer.parselnt(args[0]);
Fib F = new Fib(maxN);
for (int i = 0; i < maxN; i++)
StdOut.printin(F.eval(i));
}

Sequence.java

public interface Sequence

{
}

public double eval(int N);

ava Fib 15

j
0
0
0
.0
0
0
0

Common-sense starting point for solving any recurrence

Ex. 2: Quicksort NCn=(N+1)Cy_1 +2N

QuickSeq.java
public class QuickSeq implements Sequence

{

private final double[] c; % java QuickSeq 15

0.000000

public QuickSeq(int maxN) 2.000000

{ 5.000000

c = new double[maxN+1]; 8.666667

c[0] = O; 12.833333

for (int N = 1; N <= maxN; N++) 17.400000

c[N] = (N+1)*c[N-11/N + 2; 22.300000

} 27.485714

32.921429

public double eval(int N) 38.579365

{ return c[N]; } 44.437302

50.477056

public static void main(String[] args) 56.683478

{ 63.043745

// Similar to Fib.java. 69.546870

}

Common-sense starting point for solving any recurrence

Use your computer to plot initial values. QuickSeq.java
public class QuickSeq implements Sequence
{
Valuesjava // Implementation as above.
public class Values public static void main(String[] args)
{ {
public static void show(Sequence f, int maxN) int maxN = Integer.parseInt(args[0]);
{ QuickSeq g = new QuickSeq(maxN);
double max = O; Values.show(q, maxN);
for (int N = 0; N < maxN; N++) }
if (F.eval(N)>max) max = f.eval(N); }
for (int N = 0; N < maxN; N++) T Sandaa
{
double x = 1.0*N/maxN;
double y = 1.0*f.eval(N)/max;

StdDraw.filledCircle(x, y, .002);

}
StdDraw.show();

% java QuickSeq 1000 |

ANALYTIC COMBINATORICS
PART ONE

2. Recurrences

e Computing values

AN INTRODUCTIO N=

e Telescoping

ANALYSIS

A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

ANALYTIC COMBINATORICS
PART ONE

2. Recurrences

e Computing values

AN INTRODUCTIO N=

e Telescoping

ANALYSIS

A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

2b.Recur.Telescope

Telescoping a (linear first-order) recurrence

Linear first-order recurrences telescope to a sum.

Example 1.

an=a,_1+n with ag=0
Apply equation for n—1 = dpn_o + (n — 1) +n
Do it again

Continue, leaving a sum

Evaluate sum

Challenge: Need to be able to evaluate the sum.

Elementary discrete sums

geometric series

arithmetic series

binomial (upper)

binomial theorem

Harmonic numbers

Vandermonde convolution

The Art of
Computer
Programming

cntal Algorithms

DONALD E. KNUTH

see Knuth volume |
for many more

Telescoping a (linear first-order) recurrence (continued)

When coefficients are not 1, multiply/divide by a summation factor.

Example 2.
a, =2a,_1+2" with ag=0
a dn—
Divide by 2 2_’; =2 1 4
n—
dn 5
Telescope to a sum — = 1 =n]
1<k<n -
a, = n2"

Check.
n2" =2(n—1)2""" 2"

Challenge: How do we find the summation factor?

Telescoping a (linear first-order) recurrence (continued)

Q. What’s the summation factor for ap = Xpdn—1 + ... ?

A. Divide by XnXn_1Xp—2 ... Xj

Example 3.
1)
a, = (1 +—)an_1 +2 forn>0with ag =0
n
summation factor:
n+1 n n-—1 32
e —— = 1
n n—1n-2 21 n
a an_ 2
Divide by n+1 n__ Zn-l
n-+1 n n—+1
. 2
=2 — =2H — 1
Telescope Z k11 n+1
1<k<n

Challenge: Still need to be able to evaluate sums.

Bob Sedgewick
2

In-class exercise 1.

Verify the solution for Example 3.

Check initial values

1
an:<1+;>an_1+2 forn>0with ag =0 ap=2(n+1)(Hpp — 1)

ai =2ap+2=2

3
32:§a1+2:5

4
a3 = 3a +2 =26/3

Proof

(1+ l)2n(hf,, — 1) +2

di :4(/_/2—1):2

82:6(/_/3—1):5

a3 =8(Hs—1)
=8(1/2+1/3 +1/4)
—26/3

=2(n+1)(H,—1)+2

=2(n+1)(Hps1 — 1)

dn

In-class exercise 2.

Solve this recurrence:

Hard way:

na, = (n—2)a,_1+2 forn>1with a; =1

n—2n—3n—4 1

summation factor: ce e —

Easy way:

n n—1n-2 n(n—1)

28 =2 so apy =1
therefore a, =1

|

WHY?

17

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

AN INTRODUCTIO N=

e Telescoping

ANALYSIS

A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

2b.Recur.Telescope

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

e Telescoping

ANALYSIS
A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

2c.Recur.Types

Types of recurrences

linear
first
order
nonlinear
linear
second order nonlinear
variable
coefficients

higher order

full history

divide-and-conquer

Ap = NGyp_1 — 1
anp =1/(14+an—_1)
Ap = Qp—1 + 20,,—9
Ay, = Qp—1ap—2 + /Ap_2
ap =Nap_1+ (n—1)ap_2+1
an = f(Gn_1,0n_2, ., Qn_¢)
Ay, =N+ 0p_1+ Qp_2...+ Q7

Ap = Q|n/2) T Q[p/2] + N

20

Nonlinear first-order recurrences

Example. (Newton’s method)

SqgrtTwo.java

c[N] = (c[N-1] + 2/c[N-11)/2;

guadratic convergence:
number of significant
digits doubles for
each iteration

R

R R R R RERRRRRR

) [Typical in scientific computing]

java SqrtTwo 10

.0

.5
.4166666666666665
.4142156862745097
.4142135623746899
.414213562373095
.414213562373095
.414213562373095
.414213562373095
.414213562373095

21

Higher-order linear recurrences

[Stay tuned for systematic solution using generating functions (next lecture)]

Example 4.
a, =5a,_1 —6a,_, forn>2withag=0anda; =1
Postulate that a, = x» X1 = 5x"~1 _ gx7 2
Divide by xn-2 x2 — 5x +6=0
Factor (x—2)x—=3)=0
Form of solution must be a, = cp3" + 12"

solve for coefficients on initial conditions

3co + 2¢

g
I

—
I

Solutionisco=1and ¢;=-1 a, =3"=2"

22

Higher-order linear recurrences

[Stay tuned for systematic solution using generating functions (next lecture)]

Example 5. Fibonacci numbers

an =ap_1+a,—» forn>2withag=0anda; =1

Postulate that a, = x” X1 = 11 + x1 2
Divide by xn-2 X —x—1=0
A 5= 1++/5
Factor (x—0¢)(x—¢)=0 2
G L= V5
Form of solution must be a, = Coqﬁn + Cq ¢” 2
Use initial conditions to ao=0=co+ ¢y Note dependence
solve for coefficients n on initial conditions
a; =1 = ¢cy + ocy
n n
Solution a, = (b— — (b—

IRVERRRVE]

Higher-order linear recurrences (continued)

Procedure amounts to an algorithm. Example 5. Fibonacci numbers
a,=ap_1+ap_» forn>2withag=0anda; =1
Postulate that a, = x" X' = X" x"2
Divide by xn-2 X —x—1=0
. _1+45
Factor x—¢)(x—09)=0 =
X 5_1-V5
. Form of solution must be a, = cod" +c1¢" T2
Multiple roots? Add nar terms (see text) o
Use initial conditions to a=0=co+ ¢

Note dependence

solve for coefficients on initial conditions

a1 = 1= ¢co + o

" @A‘n
Solution a, = - i

IR

Need to compute roots? Use symbolic math package.

sage: realpoly.<z> = PolynomialRing(CC)
sage: factor(zA2-z-1)
(z - 1.61803398874989) * (z + 0.618033988749895)

Complex roots? Stay tuned for systematic solution using GFs (next lecture)

24

Divide-and-conquer recurrences

Divide and conquer is an effective technique in algorithm design.
Recursive programs map directly to recurrences.

Classic examples:
* Binary search
» Mergesort
 Batcher network
« Karatsuba multiplication
» Strassen matrix multiplication

25

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

e Telescoping

ANALYSIS
A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

2c.Recur.Types

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

AN INTRODUCTIO N=

e Telescoping

ANALYSIS

A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

Warmup: binary search

Everyone’s first divide-and-conquer algorithm

// Precondition: array a[] 1is sorted.
public static int rank(int key, int[] a)
{

int lo = 0;

int hi = a.length - 1;

while (To <= hi)

{
// Key 1is in al[lo..hi] or not present.
int mid = 1o + (hi - 1o0) / 2;
if (key < a[mid]) hi = mid - 1;
else if (key > a[mid]) To = mid + 1;
else return mid;

}

return -1;

Number of compares in the worst case

B/\/:BL/\//2J+1 for N > 1 with By =1

W~

UW”WMMHM

Algorithms

28

Analysis of binary search (easy case)

BN:BLN/2J+1 for N > 1 with B; =1

Exact solution for N = 27 .

an=apn_1+1 forn>0with ag =1
Telescope to a sum dn = Z 1=n /

By = 1gN when N is a power of 2
Check. IgN =Ig(N/2) + 1

Bob Sedgewick
+ 1

Bob Sedgewick
+ 1

Bob Sedgewick
a0 +

Analysis of binary search (general case)

Easy by correspondence with binary numbers

Define By to be the number of bits in the binary representation of N. Example.
B =1. 1101011 110101
« Removing the rightmost bit of N gives |LN/2] . 107 53
Therefore By =B +1 forN>1with B; =1
e v LN/2]
same recurrence as for binary search
Theorem. Bv= LIg N] +1 By=n-+1 for2" <N < 2
Proof. Immediate by definition of | | . or n<IgN<n+1 = n=|IgN|
N 1 2 3 4 5 6 7 8 9
binary 1 10 11 100 101 110 111 1000 1001
Ig N 0 1.0 1.58... 2.0 2.32... 2.58... 2.80... 3 3.16...
Llg NJ 0 1 2 2 2 2 3 3
Lig NJ +1 1 2 2 3 3 3 3 4 4

1

30

Mergesort

Everyone’s second divide-and-conquer algorithm

public class Merge

{

sort(Comparable[] a, Comparable[] aux, int lo, int hi)

{
if (hi <= 10) return;
int mid = 1o + (hi - 10) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi); '
merge(a, aux, lo, mid, hi); |
} Nmﬂm“mﬂm

Algorithms

}

For simplicity, assume merge implementation uses N compares

Number of compares for sort: Cy = C|n/2| + Ciny21 + N for N> 1T with Gy =1

31

Bob Sedgewick
0

Analysis of mergesort (easy case)

Number of compares for sort: Cn = Cin/2] + Cinj21 N for N > 1 with C; =1

Already solved for N = 2n

Example 2.
an =2an-1+2" with ag =0
d an—
Divide by 27 2—7) = 2L]] + 1
2!7—
dn
Telescope to a sum —_— = 1 =n
2!) ,
1<k<n
a, =n2"

Solution: Cn = NIgN when N is a power of 2

Bob Sedgewick
0

Analysis of mergesort (general case)

Number of compares for sort: Cn = Cin/2] + Cinj21 N for N > 1 with C; =1

Solution: Cy = NIgN when N is a power of 2

Q. For quicksort, the number of compares is ~ 2NInNN — 2(1 —)N

Is the number of compares for mergesort ~ /\llg/\/ + aN for some constant «?

A.NO'!

33

Bob Sedgewick
0

Coefficient of the linear term for mergesort

public class MergelLinearTerm implements Sequence

{

private final double[] c;

public MergeLinear(int maxN)
{
c = new double[maxN+1];
c[0] = 0O;
for (int N = 1; N <= maxN; N++)
c[N] = N + c[N/2] + c[N-(N/2)];
for (int N = 1; N <= maxN; N++)
c[N] -= N*Math.log(N)/Math.log(2)) + N;
}

public double eval(int N)
{ return c[N]; 1}

public static void main(String[] args)

{
int maxN = Integer.parselnt(args[0]);
MergeLinearTerm M = new MergelLinearTerm(maxN) ;
Values.show(M, maxN);

}

% java MergelLinearTerm 512

e 00 Standard Draw

File

34

Analysis of mergesort (general case)

Number of compares for sort:

Same formula for N+1.

Subtract.

Define Dy = Cna+1 - Ch.

Solve as for binary search.

Telescope.

C/\/ — CL/\//2J + C[/\//ﬂ + N for N > 1 with C1 =1 0

Cner = Crvany/a) + Crvan 2 £ N+
= Crvy21 + Cinvyz)1 TN+

Cnt1 = Cn =Cnj2j+1 — Cinyz) +1

Dy = DL/\//2J + 1
different

initial
Dy = [lgN] +2 /value

Theorem. Cn = N =1 + number of bits in binary representation of numbers < N

[N/2] = [(

O 00 NOYUVI A~ WN R

[N/2]

\A.p.pwwmwl—ll—lc

+

1

uT A D W WNNRR

z

+1)/2]

m-h-hwwNNHH\

IR w e B e G R R [

[(N+1)/2]

35

Bob Sedgewick
0

Combinatorial correspondence

Sn = number of bits in the binary rep. of all numbers < N

SN2 SiN/2] N—1

1 1

10 1 0
11 1 1
100 10 0
101 10 1
110 11 0
111 11 1
1000 = + 1000 0
1001 100 1
1010 101 0
1011 101 1
1100 110 0
1101 110 1
1110 111 0

IN = S|Ny2) Fony21 BN -

Same recurrence as mergesort (except for-1): Cy =Sy +N —1

Number of bits in all numbers < N (alternate view)

842 1

e

0000
0001
0010
0011
0100
0101
0110
N1o111
1000
1001
1010
1011
1100
1101
1110

—
llgN] + 1

bits are in an subtract off red Os
N by LIgN+1] box column by column
Sv=N(lgN]+1)— > 2
0<k<lIgN]|

= N|IgN| —2UBNI+1 4 N 11

Cn=Sv+tN-1
= N|IgN| — 2ll8NI+1 L 9N

Theorem. Number of compares for mergesortis N|IgN| — ollBNJ+1 4 9N

37

Analysis of mergesort (summary)

Number of compares for sort: Cn = Cin/2] + Cinj21 N for N > 1 with C; =1 0

Solution: Cy = NIgN when N is a power of 2

Theorem. Number of compares for mergesort is /\/Ug/\/J — QUg NI+l + 2N

Alternate formulation (Knuth). Cyn = NlgN + Na(N)

1 Notation: [lgN]| =IgN — {lg N}
W Na(N)
0 - 1 — {lg /\/}

0 —

+
W | 1—{isN)

Of(N) ™ 6T4 lgg"f ~ - {lg N} . 21—{1gN} J

256

38

Bob Sedgewick
0

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

AN INTRODUCTIO N=

e Telescoping

ANALYSIS

A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

e Telescoping

ANALYSIS
A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

Divide-and-conquer algorithms

Suppose that an algorithm attacks a problem of size N by

* Dividing into o parts of size about N/p.

 Solving recursively.

* Combining solutions with extra cost O(NY(log N)?)

Example 1 (mergesort): a=2,=2,y=1,0=0

Example 2 (Batcher network): cx=2,B=2,y=1,0=1

Example 3 (Karatsuba multiplication): «=3,B=2,y=1,0=0

Example 4 (Strassen matrix multiply): a=7,=2,y=1,8=0

only valid when
N is a power of 2

|
Cn=2Cnj2 + N
C/\/ = 2CN/2 + ng/\/
Cn=3Cnjs +N

Cn=7Cnp+N

41

“Master Theorem” for divide-and-conquer algorithms

Suppose that an algorithm attacks a problem of size n by
dividing into o parts of size about n/B with extra cost ©(nv(log n)?)

Theorem. The solution to the recurrence

dn = aAp/B+0(1) T An/g+O(1) T -+ -+ An/g+0(1) T O(n” (log ”)5)

is given by o torms g
a, = ©(n"(logn)°) when v < log;
a, = 0(n"(logn)°*") when v = log;
a, = O(n'°8s) when v > logg a
Example: o =3 |
B: 2 | |
B=3 RS S e S s
B= 4 | | { | | i | | | | % | | |]

42

Bob Sedgewick
>

Bob Sedgewick
<

Typical “Master Theorem” applications

Master Th
Suppose that an algorithm attacks a problem of size N by aster theorem

a, = ©(n"(logn)° when v <loggs a

* Dividing into o parts of size about N/p. S
il

an, = 0(n"(logn when v = log;

 Solving recursively.

— logg a
* Combining solutions with extra cost O(NY(log N)?) a, = O(n) when v > logﬁ @

Asymptotic growth rate

|
Example 1 (mergesort): a=2,B=2,y=1,8=0 O(N log N)
Example 2 (Batcher network): «a=2,B=2,y=1,5=1 O (N (log N)?)
Example 3 (Karatsuba multiplication): «a=3,B=2,y=1,8=0 @(Nlog2 3) — @(N1'585”')

Example 4 (Strassen matrix multiply): a=7,B=2,y=1,8=0 @(Nlog2 7) — @(N2'807“')

43

Versions of the “Master Theorem”

Suppose that an algorithm attacks a problem of size N by

* Dividing into o parts of size about N/p.

 Solving recursively.

* Combining solutions with extra cost O(NY(log N)?)

1. Precise results are available for certain applications
in the analysis of algorithms.

2. General results are available for proofs
in the theory of algorithms.

3. A full solution using analytic combinatorics
was derived in 2011 by Szpankowski and Drmota.

see “A Master Theorem for Divide-and-Conquer Recurrences’

ALGORITHMS

g

!\\‘

by Szpankowski and Drmota (SODA 201 1).

>

44

ANALYTIC COMBINATORICS
PART ONE

Recurrences

e Computing values

e Telescoping

ANALYSIS
A1LGORITHMS * Types of recurrences
* Mergesort

* Master Theorem

http://aofa.cs.princeton.edu

Exercise 2.17

Percentage of three nodes at the bottom level of a 2-3 tree?

AN mnomﬁﬂ
ANALYSIS
e

Exercise 2.17 [Yao] (“Fringe analysis of 2-3 trees”) Solve the recurrence
2AN_

AN = AN—l —

+2(1— 2A]‘$")

for N > 0 with Ay = 0.

'This recurrence describes the following random process: A set of N elements collect
into “2-nodes” and “3-nodes.” At each step each 2-node is likely to turn into a 3-
node with probability 2/N and each 3-node is likely to turn into two 2-nodes with
probability 3/N. What is the average number of 2-nodes after N steps?

46

Exercise 2.69

Details of divide-by-three and conquer?

Exercise 2.69 Plot the periodic part of the solution to the recurrence
an =3a|n/3 + N for N >3witha =a2 =a3z =1
L for1< N <972

ANALYSIS
E S

47

Assignments for next lecture

1. Read pages 41-86 in text.

ANALYSIS
ALGORITHMS

SECOND EDITION

sepcEwicK

2. Write up solution to Ex. 2.17.

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

3. Set up StdDraw from Algs booksite

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Amazon - Pearson - InformIT] surveys the most
ALcoRHwS, 4TH EDON important algorithms and data structures in use today. The textbook is organized into six chapters:

1. Fundamentals

« Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our |
2. Sorting programming model. {

3. Searching « Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort, and quicksort. It also includes a binary heap
o implementation of a priority queue.
5 Suings « Chapter 3: Searching describes several classic symbol table implementations, including binary search trees, red-black trees, and hash tables.

Chapter 4: Graphs surveys the most important graph processing problems, including depth-first search, breadth-first search, minimum
spanning trees, and shortest paths.

Chapter 5: Strings investigates specialized algorithms for string processing, including radix sorting, substring search, tries, regular expressions,

and data compression.

Chapter 6: Context highlights ions to systems ing, scientific i i L ions research, and |
intractability.

6. Context

ReLATED BooksiTes

4 D O EX e r'c I S e 2 6 9 Applications to science, engineering, and industry are a key feature of the text. We motivate each algorithm that we address by examining its

- . . impact on specific applications.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while
i d while browsing the web); the textbook is for your use when initially learning new material and when reinforcing your

of that material (for example, when reviewing for an exam). The booksite consists of the following elements:

« Excerpts. A condensed version of the text narrative, for reference while online.

« Java code. The algorithms and clients in this textbook.

References

« Exercise solutions. Solutions to selected exercises.
Online Course

Lecture Siides To get started. Here are instructions for setting up our Java i [Mac OS X - Windows - Linux 1.

ANALYTIC COMBINATORICS
PART ONE

ANALYSIS 2. Recurrences
ALGORITHMS

http://aofa.cs.princeton.edu

