ANALYTIC COMBINATORICS
PART ONE

1. Analysis

= ANALYSI Of
LGORITHMS)
Algorithms

http://aofa.cs.princeton.edu

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS

ALGORITHMS e Example: Quicksort
* Resources

http://aofa.cs.princeton.edu

la.AofA.History

Why Analyze an Algorithm?

1. Classify problems and algorithms by difficulty.

'® | ONlogN):

3. Better understand and improve implementations and algorithms.

Intellectual challenge: AofA is even more interesting than programming!

Analysis of Algorithms (Babbage, 1860s)

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science.
Whenever any result is sought by its aid, the question will arise—By what course of
calculation can these results be arrived at by the machine in the shortest time?”

— Charles Babbage (1864)

Analytic Engine

how many times do you

/ have to turn the crank?

Analysis of Algorithms (Turing (1), 1940s)

“It is convenient to have a measure of the amount of work involved in a computing
process, even though it be a very crude one. We may count up the number of times

s that various elementary operations are applied in the whole process . ..”
— Alan Turing (1947)

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY
A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known ‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no
exponential build-ub need occur.

Analysis of Algorithms (Knuth, 1960s)

To analyze an algorithm:

*Develop a good implementation. D. E. Knuth
ldentify unknown quantities representing the basic operations.

*Determine the cost of each basic operation.

*Develop a realistic model for the input.

*Analyze the frequency of execution of the unknown quantities.

« Calculate the total running time: Zfrequency(q) x cost(q)

’
q
I
BENEFITS: 1 l
N . C
Scientific foundation for AofA. P o A
Can predict performance and compare algorithms. s PG e Art of
v P1 Computer
;"M Programming
DRAWBACKS: — D(: !“::4! mental Algorithms
Model may be unrealistic. - D
oy - . — DONALD E. KNUTH
Too much detail in analysis.

Theory of Algorithms (AHU, 1970s; CLR, present day)

To address Knuth drawbacks:
Aho, Hopcroft
*Analyze worst-case cost and Ullman

[takes model out of the picture].

«Use O-notation for upper bound

[takes detail out of analysis].

Cormen, Leiserson,

Rivest, and Stein
*Classify algorithms by these costs.

BENEFIT: Enabled a new Age of Algorithm Design.

DRAWBACK: Cannot use to predict performance or compare algorithms.
(An elementary fact that is often overlooked!)

Example: Two sorting algorithms

Quicksort Mergesort
Worst-case number of compares: O(N?2) Worst-case number of compares: Nlog N
Classification O(N?2) Classification O(N log N)
BUT

Quicksort is twice as fast as Mergesort in practice and uses half the space

\ How do we know?

By analyzing both algorithms! (stay tuned)

Iyl
||||”| hlimn
gorithms

Cannot use O- upper bounds to predict performance or compare algorithms.

Analytic combinatorics context

Drawbacks of Knuth approach:
* Model may be unrealistic.
» Too much detail in analysis.

Drawbacks of AHU/CLRS approach:
« Worst-case performance may not be relevant.
» Cannot use O- upper bounds to predict or compare.

Analytic combinatorics can provide:
* A calculus for developing models.
» General theorems that avoid detail in analysis.

AC Part | (this course):
* Underlying mathematics.
e Introduction to analytic combinatorics.
« Classical applications in AofA and combinatorics.

The Art of
Computer
Programming

DONALD E. KNUTH

The Art of
Computer
Programming

DONALD E. KNUTH

The Art of
Computer
Programming

DONALD E. KNUTH

The Art of
Computer
Programming

DONALD E. KNUTH

Analytic

Combinatorics

ALGORITHMS

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS

ALGORITHMS e Example: Quicksort
* Resources

http://aofa.cs.princeton.edu

la.AofA.History

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS .
ALGORITHMS e Example: Quicksort

e Resources

http://aofa.cs.princeton.edu

1b.AofA.Scientific

Notation for theory of algorithms

“Big-Oh” notation for upper bounds

g(N) = O(f(N)) iff |g(N)/f(N)| is bounded from above as N — oo

“Omega” notation for lower bounds

g(N) = Q(f(N)) iff |g(N)/f(N)| is bounded from below as N — oo

“Theta” notation for order of growth (“within a constant factor”)

g(N) = O(f(N)) iff g(N) = O(f(N)) and g(N) = Q(f(N))

O-notation considered dangerous

How to predict performance (and to compare algorithms)?

Not the scientific method: O-notation
Theorem: Running time is O(N¢) | X
\ not at all useful for predicting performance
Scientific method calls for tilde-notation.
Hypothesis: Running time is ~aN¢ | /

\an effective path to predicting performance

O-notation is useful for many reasons, BUT
Common error: Thinking that O-notation is useful for predicting performance

Surely, we can do better

A typical exchange in Q&A

RS (in a talk):

RS:

RS:

O-notation considered dangerous.
Cannot use it to predict performance.

7?2 O(N log N) surely beats O(N?2)

Not by the definition. O expresses upper bound.

So, use Theta.

Still (typically) bounding the worst case.
Is the input a worst case?

(whispers to colleague) I'd use the O(N log N)
algorithm, wouldn’t you?

Galactic algorithms

R.J. Lipton: A galactic algorithm is one that will never be used.
Why? Any effect would never be noticed in this galaxy.
Ex. Chazelle’s linear-time triangulation algorithm

* theoretical tour-de-force

e too complicated to implement

« cost of implementing would exceed savings in this galaxy, anyway

One blogger’s conservative estimate:
75% SODA, 95% STOC/FOCS are galactic

OK for basic research to drive agenda, BUT

Common error: Thinking that a galactic algorithm is useful in practice.

Surely, we can do better

An actual exchange with a theoretical computer scientist:

TCS (in a talk):

RS:

TCS:

RS:

TCS:

Algorithm A is bad.
Google should be interested in my new Algorithm B.

What’s the matter with Algorithm A?
It is not optimal. It has an extra O(log log N) factor.

But Algorithm B is very complicated, Ig Ig N is less
than 6 in this universe, and that is just an upper
bound. Algorithm A is certainly going to run 10 to
100 times faster in any conceivable real-world
situation. Why should Google care about Algorithm B?

Well, I like Algorithm B. | don’t care about Google.

Analysis of Algorithms (scientific approach)

Start with complete implementation suitable for application testing.

Analyze the algorithm by
« Identifying an abstract operation in the inner loop.
« Develop a realistic model for the input to the program.

* Analyze the frequency of execution Cy of the op for input size N.

Hypothesize that the cost is ~aCy where a is a constant.

Validate the hypothesis by
» Developing generator for input according to model.

 Calculate a by running the program for large input.
« Run the program for larger inputs to check the analysis.

Validate the model by testing in application contexts.

Refine and repeat as necessary

Algorithms

Sedgewick and Wayne
Algorithms, 4th edition
Section 1.4

Notation (revisited)

for theory of algorithms

!

“Tilde” notation for asymptotic equivalence

g(N) ~ f(N) iff |g(N)/f(N)| = T as N — o0

!

for analysis to predict performance
and to compare algorithms

Components of algorithm analysis

Empirical
*Run algorithm to solve real problem.

* Measure running time and/or
count operations.

Challenge: need good implementation

Mathematical
* Develop mathematical model.

* Analyze algorithm within model.

Challenge: need good model, need to do the math

Scientific
«Run algorithm to solve real problem.

* Check for agreement with model.

Challenge: need all of the above

% java SortTest 1000000

10

100
1000
10000
100000

44 .44
847.85
12985.91
175771.70
2218053.41

Cn=N+1+ Z

T<k<AJ

% java QuickCheck 1000000

10

100
1000
10000
100000

44 .44
847.85
12985.91
175771.70
2218053.41

(Ck + Cn—k—1)

26.05
721.03
11815.51
164206.81
2102585.09

Potential drawbacks to the scientific approach

1. Model may not be realistic.
A challenge in any scientific discipline.

» Advantage in CS: we can randomize to make the model apply.

.|||I|||||” > |‘||||.|I|||

2. Math may be too difficult.
A challenge in any scientific discipline (cf. statistical physics).
A “calculus” for AofA is the motivation for this course!

3. Experiments may be too difficult.
* Not compared to other scientific disciplines.
e Can’t implement? Why analyze?

20

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS .
ALGORITHMS e Example: Quicksort

e Resources

http://aofa.cs.princeton.edu

1b.AofA.Scientific

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS

ALGORITHMS * Example: Quicksort
* Resources

http://aofa.cs.princeton.edu

lc.AofA.Quicksort

Example: Quicksort

public class Quick
{
private static int partition(Comparable[] a, int lo, int hi)
{
int i = lo, j = hi+l;
while (true)
{
while (less(a[++i], a[lo])) if (i == hi) break;
while (less(al[lo], al[--j1)) if (j == 10) break;
if (i >= j) break;
exch(a, 1, j);
}
exch(a, lo, j); -
return j; LWL RTH

}

Ll IR T
Algorithms

private static void sort(Comparable[] a, int To, int hi) S LA
{ .
if (hi <= To) return; SE i o
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

http://algs4.cs.princeton.edu/23quicksort/Quick.java

Start: Preliminary decisions

Cost model
* running time? -
* better approach: separate algorithm from implementation
e for sorting, associate compares with inner loop.
e Hypothesis: if number of compares is C, running time is ~aC

Input mOdE| counting
« assume input randomly ordered (easy to arrange)
« assume keys all different (not always easy to arrange)

Key question: Are models/assumptions realistic?

Stay tuned.

24

Setup: Relevant questions about quicksort

Assume array of size N with entries distinct and randomly ordered.

Q. How many compares to partition?

A N+'| public class Quick
) {
private static int partition(Comparable[] a, int 1o, int hi)
{
Q. What is the probability that the partitioning HEAIE B
item is the kth smallest? {

while (less(a[++i], a[lo])) if (1
A.1/N while (less(allo], al--j1)) if (]

if (i >= j) break;

exch(a, i, j);

hi) break;
10) break;

}
Q. What is the size of the subarrays exch(a, To, 3);
in that case? return j;

}
A. k-1 and N-k

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= 10) return;

int j = partition(a, lo, hi);

Q. Are the subarrays randomly sort(a, 1o, j-1):
ordered after partitioning? } sort(a, j+1, hi);
A. YES. }

Iyl
LT

25

Main step: Formulate a mathematical problem

Recursive program and input model lead to a recurrence relation.
Assume array of size N with entries distinct and randomly ordered.

Let Cn be the expected number of compares used by quicksort.

CN—/\/—|—1—|— Z Ck_1—|—CN k)

1 gng R
compares for
for partitioning W;:gakrrie;ytshe
partitioning
probability element
k is the
partitioning

element

Simplifying the recurrence

Apply symmetry.

Multiply both sides by N.

Subtract same formula for N—1.

Collect terms.

Cn=N+1+ Z (Cr_1 + Cni)

1eeen N \ /

both sums are
Co+Ci+... + Cna

2
Cn=N+T+ > G
1<k<N

NCy=N(N+1)+2 Y G
1<k<N

NCn — (N = 1)Cn_1 = 2N + 2Cn_1

NCy = (N + 1)Cn_1 + 2N

Co=0

27

Aside

Simplified recurrence gives efficient algorithm for computing result

1
Cv=N+1+ > N<C’< + Cnk—1) QUADRATIC time
0<k<N—1 l
c[0] = 0;
for (int N = 1; N <= maxN; N++)
{
c[N] = N+1;

for (int k = 0; k < N; k++)
c[N] += (c[k] + c[N-1-k])/N;

NCy = (N+1)Cn=1 + 2N LINEAR time

\> c[0] = 0;
for (int N = 1; N <= maxN; N++)

c[N] = (N+1)*c[N-1]/N + 2;

AofA: Finding a fast way to compute the running time of a program

28

Solving the recurrence

NCy = (/\/ + 1)C/\/—1 + 2N

Tricky (but key) step: Cn o CN—1 4 2
divide by N(N+1) N+1 N N + 1
C Cn— 2 Cn— 2 2
/\/N1:7\/1+N TSN T TN TN
Telescope. + + N +
S B
2 3 TN N+
e 1
Simplify (ignore small terms). Cn ~ 2N Z i 2N
1>k>N
N

>
Approximate with an Cn ~ 2/\/(/ —dx+vy) — 2N
integral (stay tuned) 1 X
=2NInN —2(1 —)N Euler's constant = 57721

29

Bob Sedgewick
N

Finish: Validation (mathematical)

It is always worthwhile to check your math with your computer.

public class QuickCheck

{

public static void main(String[] args)

{

int maxN = Integer.parseInt(args[0]);
double[] ¢ = new double[maxN+1];
c[0] = O; NCNn = (N4 1)Cn_1 + 2N
for (int N = 1; N <= maxN; N++) k///// ()

c[N] = (N+1)*c[N-1]/N + 2;

for (int N = 10; N <= maxN; N *= 10) k/,,/f*,,,//”'2ﬁJh1ﬁJ—-2(1 —)N
{

double approx = 2*N*Math.log(N) - 2%(1-.577215665)*N;
StdOut.printf("%10d %15.2f %15.2f\n", N, c[N], approx);

}
% java QuickCheck 1000000

10 44 .44 37.60

100 847.85 836.48
1000 12985.91 12969.94
10000 175771.70 175751.12
100000 2218053.41 2218028.23

1000000 26785482.23 26785452 .45

30

Finish: Validation (checking the model)

It is always worthwhile to use your computer to check your model.

Example: Mean number of compares used by Quicksort for randomly ordered
distinct keys is 2NInN — 2(1 —~)N

Experiment: Run code for randomly ordered distinct keys, count compares

2NInN = 2(1 —~v)N
1000 trials for each N

one grey dot for each trial
red dot: average for each N

Observation: May be interested in distribution of costs

31

Quicksort compares: limiting distribution is not “normal”

see “Approximating the Limiting Quicksort Distribution.” by Fill and Janson (RSA 2001).

exact distribution
(from recurrence)
for small N

05 “hh
WWWQ’W&»
“”"‘ 'Q‘Q;;‘Q’s‘v‘vcv —

"”QQ R
IR
\ 50"’#‘%;&":”:’.‘ \\

100 200 300 400

empirical
validation
N=1000

¥y

11000 12000 13000 14000 15000 16000

Bottom line:
A great deal is known about the performance of Quicksort.
 AofA leads to intriguing new research problems.

centered
on mean

32

Easy method to predict (approximate) performance

Hypothesis: Running time of Quicksort is ~aN In N.

Experiment.
* Run for input size N. Observe running time. 10
e [Could solve for a.
l[D 0:' tio vefor]aO]Nt i by a factor of LU IUON) ;0 W10
redict time for o increase by a factor o NN = TN
Example: 1 g

*Run quicksort 100 times for N = 100,000: Elapsed time: 4 seconds.
Predict running time of 4 x 10.2 = 40.8 seconds for N = 1M.
*Observe running time of 41 seconds forN=1M

10

10
i logyo N

« Confidently predict runring time of 41 x 1000.5 = 11.4 hours for N = 1B.

48

Note: Best to also have accurate mathematical model. Why? 48 x (70/6) x (80/7) x (90/8)

= 20 hours

33

Bob Sedgewick
10

Bob Sedgewick
10

Bob Sedgewick
12

Bob Sedgewick
48

Bob Sedgewick
48

Bob Sedgewick
48 x (70/6) x (80/7) x (90/8) = 20 hours

Validate-refine-analyze cycle

It is always worthwhile to validate your model in applications.

Quicksort: Validation ongoing for 50 years!

Example 1 (late 1970s): Sorting on the CRAY-1. as many times S——————

10100101010101100001110101010
1010011010010101101010001001

. . as Posslble! 010101010101010100001101011

L 010010011101001101010001100

e Appllcatlon- cryptog raphy- IS 01101111000110101010011011
01001 ~J10010011101010101100010111

1000010101100100101010101010011110101

“ h 11 d d 64 b. d 0101010000101001011101010111101000110

- - 0110101010101001011101010100010011110

* Need to “sort the memory” 1M pseudo-random it words.
0100101001010010011101010101100010101

1000010101100100101010101010011110010

* Bottom line: analysis could predict running time to within 10-6 seconds.

Example 2 (1990s): UNIX system sort.

* Application: general-purpose.
«User app involving files with only a few distinct values performed poorly.

* Refinements: 3-way partitioning, 3-way string quicksort (see Algs4).

« Refined models (not simple): research ongoing. «—— see “The number of symbol comparisons in QuickSort and QuickSelect.”
by Vallee, Clement, Fill, and Flajolet (ICALP 2009).

Example 3 (2010s): Sorting for networking.
« Application: sort ~1B records ~1K characters each.
* Need to beat the competition or go out of business.
« Refinement: adapt to long stretches of equal chars (avoid excessive caching)

34

Double happiness

“People who analyze algorithms have double happiness. First of all
they experience the sheer beauty of elegant mathematical patterns
that surround elegant computational procedures. Then they
receive a practical payoff when their theories make it possible to
get other jobs done more quickly and more economically.”

— D. E. Knuth (1995)

35

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS

ALGORITHMS * Example: Quicksort
* Resources

http://aofa.cs.princeton.edu

lc.AofA.Quicksort

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS

ALGORITHMS e Example: Quicksort
e Resources

http://aofa.cs.princeton.edu

1d.AofA.Resources

Books

are the prime resources associated with this course.

: First edition
|\t/|eal? (1995) Reference
2 for
(2013) 7 Algorithms

ALGORITHMS Algorithms

Text

oy Analytic Reference
Part I Combinatorics for SIosrammiue

Philippe Flajolet and
Robert Sedgewick

Java pEEE

Robert Sedgewick Keevia Wyne

Reading the books is the best way to develop understanding.

38

Booksites

are web resources associated with the books.

http://aofa.cs.princeton.edu

68 00

Introduction to the Analysis of Algorithms by Robert Sedgewick and P

ppe Flajolet

1. Analysis of Algorithms

3. Generating Functions
Asymptotics

Strings and Tries

ALGORITHMS

ANALYSIS OF ALGORITHMS

2. Recurrence Relations

Trees
Permutations

AN INTRODUCTION TO THE ANALYSIS OF ALGORITHMS

People who analyze algorithms have double happiness. First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational
procedures. Then they receive a practical payoff when their theories make it possible to get other jobs done more quickly and more economically. D. E. Knuth

This booksite is under development (Spring 2012). No promises.

Textbook. The textbook An Introduction to the Analysis of Algorithms by Robert Sedgewick and Philippe Flajolet [Amazon - Inform IT] overviews the primary techniques used in
the mathematical analysis of algorithms. The material covered draws from classical ical topics, i ing discrete i y real analysis, and
combinatorics, as well as from classical computer science topics, including algorithms and data structures.

 Chapter 1: Analysis of Algorithms considers the general motivations for algorithmic analysis and relationships among various approaches to studying performance
characteristics of algorithms.

Chapter 2: Recurrence Relations concentrates on fundamental mathematical properties of various types of recurrence relations which arise frequently when analyzing an
algorithm through a direct mapping from a recursive representation of a program to a recursive representation of a function describing its properties.

Chapter 3: Generating Functions introduces a central concept in the average-case analysis of algorithms: generating functions — a necessary and natural link between the
algorithms that are our objects of study and analytic methods that are necessary to discover their properties.

Chapter 4: methods of deriving approximate solutions to problems or of approximating exact solutions, which allow us to develop
concise and precise estimates of quantities of interest when analyzing algorithms.

 Chapter 5: Trees investigates properties of many different types of trees, fundamental structures that arise implicitly and explicitly in many practical algorithms. Our goal is to
provide access to results from an extensive literature on the combinatorial analysis of trees, while at the same time providing the groundwork for a host of algorithmic

Wes Resources

Errata

Revateo BooksiTes

PIN|P |

Words and Maps
FAQ
Lecture Slides

Analytic
Combinatorics

ANALYSIS
ALGORITHMS

Chapter 6: Per surveys

ial properties of permutations (orderings of the numbers 1 through N) and shows how they relate in a natural way to fundamental
and widely-used sorting algorithms.

Chapter 7: String and Tries studies basic combinatorial properties of strings, sequences of characters or letters drawn from a fixed alphabet, and introduces algorithms that
process strings ranging from fundamental methods at the heart of the theory of computation to practical text-processing methods with a host of important applications.
Chapter 8: Words and Maps covers global properties of words (N-letter strings from an M-letter alphabet), which are well-studied in classical combinatorics (because they
model sequences of independent Bernoulli trials) and in classical applied algorithmics (because they model input sequences for hashing algorithms). The chapter also covers
random maps (N-letter words from an X-letter alphabet) and discusses relationships with trees and permutations.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while programming and while browsing
the web); the textbook is for your use when initially learning new material and when reinforcing your understanding of that material (for example, when reviewing for an exam).
The booksite consists of the following elements:

« Excerpts. A condensed version of the text narrative, for reference while online.

 Exercise solutions. Solutions to selected exercises.

« Java, Sage, and Python code. Validation of analytic results.
The book was first published in 1995. This booksite aims to supplement the material in the text while still respecting the integrity of the original.

Other resources. To fully engage with this material, you will eventually want to download and use at least the following tools:

« StdJava code. The basic programming model that we developed for our books Introduction to Programming (in Java) and Algorithms, 4th Edition. Available at the Algs4
booksite.

« TgX. Classical math typsetting software. Get started at the TgX user’s group website.

MathJax. Mechanism for embedding math in web pages. No need to download, just link to their site. See the MathJax home page. MathJax test: When a # 0, there are two
solutions to ax2 + hx + ¢ = () and thev are

Surf the booksite to search for information, code, and data.

39

Extensive original research

is the basis for the material in this course.

Knuth's S WO B
collected : i -
works
Flajolet's collected works
collected to appear 2014
works Cambridge U. Press

research papers
and books
by hundreds
of others

A prime goal of this course: make this work accessible to you. ~
20,000+ pages of material () 4

More resources

Math typesetting

Symbolic math

Web references

01362

7
_ 13
20

23 12

102211 21

Y F,'; INTEXIT
i 9 MathJax

TeXShop LaTeXiT

Mapie 16
Mathematica' § %

NIST HANDBOOK
of MATHEMATICAL
FUNCTIONS

41

Introduce, read, discuss

ANALYTIC COMBINATORICS

1. We introduce topics in lecture. PART ONE

2. You read the book and do assignments before the next lecture. Andlysis
of
Exercise 1.14 Follow through the steps above to solve the recurrence Algorithms

2
Ay =1+ Z Ajy forN >0.
1<G<N

3. We discuss reading and exercises online. [No assessments.]

The main resource in this class is YOU!

Goal: For you to learn quite a few things that you do not now know.

42

Exercises 1.14 and 1.15

How many recursive calls in Quicksort?
How many exchanges?

Exercise 1.14 Follow through the steps above to solve the recurrence

 INTRODECTIONTI| — 2
ANéLYgi AN =1 + N Z A]—l fOI' N > 0.
ALGORITHMS 1=I=N
Exercise 1.15 Show that the average number of exchanges used during the first par-
titioning stage (before the pointers cross) is (N — 2)/6. (Thus, by linearity of the
recurrences, By = %CN — %AN.)

43

Exercises 1.17 and 1.18

Switch to insertion sort for small subarrays.
What choice of the threshold minimizes the number of compares?

ANALYSI
ALGORITHMS

Exercise 1.17 If we change the first line in the quicksort implementation above to
if r-1<=M then insertionsort(l,r) else

(see §7.6) then the total number of compares to sort N elements is described by the
recurrence

1
N+1+5 > (Cjo1+Cn_j) forN > M;
Cn = 1<GEN
IN(N -1) for N <M

Solve this exactly as in the proof of Theorem 1.3.

Exercise 1.18 Ignoring small terms (those significantly less than V) in the answer
to the previous exercise, find a function f(M) so that the number of compares is
approximately

2NInN + f(M)N.
Plot the function f(M), and find the value of M that minimizes the function.

44

Assignments for next lecture

1. Surf booksites

e http://aofa.cs.princeton.edu

800

Introduction to the Analysis of Algorithms by Robert Sedgewick and Philippe Flajolet o

800 Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne

AN
ALGOR

2. Recurrence Relations discrete

AN INTRODUCTION TO THE ANALYSIS OF ALGORITHMS

People who analyze algorithms have double happiness. First of all they
experience the sheer beauty of elegant mathematical patterns that
surround elegant computational procedures. Then they receive a practical
ALYSIS Ppayoff when their theories make it possible to get other jobs done more

ITHMS quickly and more economically. D. E. Knut

This booksite is under development (Spring 2012). No promises.

Textbook. The textbook An Introduction to the Analysis of Algorithms by

or Auconms Robert Sedgewick and Phllppe Flajolet [Amazon - Inform I1] overviews the
Y Anatya of Agortama primary techpigues used In the mathematica analysis of algorithms. The

material covered draws from classical mathematical topics, including
lementary real analysis, and combinatorics, as well

e http://algs4.cs.princeton.edu

2. Start learning to use software.

« StdJava (from Algs4 booksite)
« TeX (optional: .html/Mathjax)

3. Download Quicksort and predict performance on your computer.

4. Read pages 1-39 in text.

3. Generating F
4. Asymptotics

= as from classical computer science topics, including algorithms and data
structures.

« Chapter 1: Analysis of Algorithms considers the general motivations
for algorithmic analysis and relationships among various approaches to
studying performance characteristics of algorithms.

 Chapter 2: Recurrence Relations concentrates on fundamental

mathematical properties of various types of recurrence relations which

arise frequently when analyzing an algorithm through a direct mapping
from a recursive representation of a program to a recursive
representation of a function describing its properties.

Chapter 3: Generating Functions introduces a central concept in the.

average-case analysis of algorithms: generating functions — a

necessary and natural link between the algorithms that are our objects

of study and analytic methods that are necessary to discover their
properties.

« Chapter 4: Asymptotic Approximations examines methods of deriving
approximate solutions to problems o of approximating exact solutions,
which allow us to develop concise and precise estimates of quantities
of interest when analyzing algorithms.

« Chapter 5: Trees investigates properties of many different types of
trees, fundamental structures that arise implicitly and explicitly in
many practical algorithms. Our goal s to provide access to results
from an extensive literature on the combinatorial analysis of trees,
while at the same time providing the groundwork for a host of
algorithmic applications.

Chapter 6: Permutations surveys combinatorial properties of
permutations (orderings of the numbers 1 through X) and shows how
they relate in a natural way to fundamental and widely-used sorting
algorithms.

5. Write up solutions to Exercises 1.14, 1.15, 1.17, and 1.18.

ALGORITHMS, 4TH EpITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Algorithms

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and
Kevin Wayne [Amazon - Pearson - InformlT] surveys the most important
algorithms and data structures in use today. The textbook is organized into
six chapters:

« Chapter 1: Fundamentals introduces a scientific and engineering basis
for comparing algorithms and making predictons. It also ncludes our

« Chapter 2: Snmng considers several classic sorting algorithms,
including insertion sort, mergesort, and quicksort. It also includes a

inary heap implementation of a priority queue.

« Chapter 3: Searching describes several classic symbol table
implementations, including binary search trees, red-black trees, and
hash tables.

« Chapter 4: Graphs surveys the most important graph processing
problems, including depth-first search, breadth-first search, minimum
spanning trees, and shortest paths.

NN Chapter 5: Strings investigates specialized algorithms for string
ALGORITHMS, processing, including radix sorting, substring search, tries, regular
expressions, and data compression.

+ Chapter 6: Context highlights connections to systems programming,

S comping, Sommer<ia sppcations, aperatons 1esearch

and intractability.

FAQ

Data Applications to science, engineering, and industry are a key feature of the
xt. We motivate each algorithm that we address by examining its impact

Co on specific
Errata

e Booksite, Reading o book and surfing the web are two diffrent actvtes:
References This booksite is intended for your use while online (for example, whi

TonineCouwss | Programming and \whils browsing the wab); the textbaok Is for your use

when Initially learning new material and when reinforcing your understanding
Lecture Siides of that material (for example, when reviewing for an exam). The booksite

[p— consists of the following elements

« Excerpts. A condensed version of the text narrative, for reference
while online.

« Java code. The algorithms and clients in this textbook.

AN !NTRODUC

ANALYSIS
LGORITHMS

JOND EDITION

ROBERT SEDGEWICK
PHILIPPE FLAJOLET

45

ANALYTIC COMBINATORICS
PART ONE

1. Analysis of Algorithms

e History and motivation

e A scientific approach

ANALYSIS

ALGORITHMS e Example: Quicksort
e Resources

http://aofa.cs.princeton.edu

1d.AofA.Resources

ANALYTIC COMBINATORICS
PART ONE

1. Analysis

= ANALYSI Of
LGORITHMS)
Algorithms

http://aofa.cs.princeton.edu

