
Analysis of Algorithms

http://aofa.cs.princeton.edu
http://ac.cs.princeton.edu

O r i g i n a l M O O C t i t l e : A N A L Y T I C C O M B I N A T O R I C S , P A R T O N E

O r i g i n a l M O O C t i t l e : A N A L Y T I C C O M B I N A T O R I C S , P A R T T W O

Analytic Combinatorics

2

Overview

Analysis of algorithms

• Methods and models for the analysis of algorithms.

• Basis for a scientific approach.

• Mathematical methods from classical analysis.

• Combinatorial structures and associated algorithms.

Analytic combinatorics

• Study of properties of large combinatorial structures.

• A foundation for analysis of algorithms, but widely applicable.

• Symbolic method for encapsulating precise description.

• Complex analysis to extract useful information.

3

Are these courses for me?

Q. Why study the analysis of algorithms and analytic combinatorics?

A. For many of the same reasons we study algorithms (next)!

Sure, if you can answer “yes” to these questions.

• Do you like to program?

• Do you like math?

• Have you studied Algorithms ?

• Would you like to be able to read Knuth’s books?

• and Flajolet’s papers?

4

Why study the analysis of algorithms and analytic combinatorics?

Their impact is broad and far-reaching.

Internet. Web search, packet routing, file sharing, ...
Biology. Human genome project, protein folding, ...
Computer design. Circuit layout, file system, compilers, ...
Multimedia. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines, ...
Social networks. Recommendations, news feeds, advertisements, ...
Physics. N-body simulation, particle collision simulation, …
Big data. Deep learning, autonomous vehicles, …
 ⋮

All involve understanding properties of large discrete structures

5

Why study the analysis of algorithms and analytic combinatorics?

Old roots, new opportunities.

• Analysis of algorithms dates at least to Euclid.

• Practiced by Turing and von Neumann in 1940s.

• Mostly developed by Knuth starting in 1960s.

• Steady evolution for decades.

• Analytic combinatorics dates to Euler and earlier.

• Mostly developed by Flajolet starting in 1980s.

• Many algorithms are waiting to be understood.

• Many theorems are waiting to be discovered.

“ If I have seen further, it is by
 standing on the shoulders of giants.”

− Isaac Newton

Don Knuth

“father of analysis of algorithms”

Philippe Flajolet

“father of analytic combinatorics”

109.108.229.102
pool-71-104-94-246.lsanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.lsanca.dsl-w.verizon.net
1.23.193.58
188.134.45.71
1.23.193.58
gsearch.CS.Princeton.EDU
pool-71-104-94-246.lsanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.lnse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com
pool-71-104-94-246.lsanca.dsl-w.verizon.net
gsearch.CS.Princeton.EDU
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
118-171-27-8.dynamic.hinet.net
cpe-76-170-182-222.socal.res.rr.com

6

Why study the analysis of algorithms and analytic combinatorics?

To solve problems that could not otherwise be addressed.

Example: Cardinality estimation (stay tuned).

How many of these are different?

7

Why study the analysis of algorithms and analytic combinatorics?

For intellectual stimulation.

“ Here's to pure mathematics—may it never be of any use to anybody.”

− attributed to G. H. Hardy

“ The point of mathematics is that in it we have always got rid of the
particular instance, … no mathematical truths apply merely to fish, or
merely to stones, or merely to colours. So long as you are dealing with
pure mathematics, you are in the realm of complete and absolute
abstraction. … Mathematics is thought moving in the sphere of complete
abstraction from any particular instance of what it is talking about.

− Alfred North Whitehead

Abstract Thought 379, by Theo Dapore

8

Why study the analysis of algorithms and analytic combinatorics?

They may unlock the secrets of life and of the universe.

“ Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general
ideas of operation which will bring together in simple, logical and unified form the largest
possible circle of formal relationships. In this effort toward logical beauty spiritual
formulas are discovered necessary for the deeper penetration into the laws of nature.”

− Albert Einstein

9

Why study the analysis of algorithms and analytic combinatorics?

For fun and profit.

10

Why study the analysis of algorithms and analytic combinatorics?

Some compelling reasons

• Their impact is broad and far-reaching.

• Old roots, new opportunities.

• To solve problems that could not otherwise be addressed.

• For intellectual stimulation.

• They may unlock the secrets of life and of the universe.

• For fun and profit.

Why study anything else?

This lecture. A case in point.

Purpose. Prepare for the study of the analysis of algorithms

Context for this lecture

11

in the context of an important application.

Assumed. Familiarity with undergraduate-level Java programming, computer science, and algorithms.

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

textbooks
Computer Science Algorithms

online lectures

booksites

… or whatever other resources you might have used to learn these topics

For reference.

http://aofa.cs.princeton.edu

Cardinality Estimation

Robert Sedgewick
Princeton University
with special thanks to Jérémie Lumbroso

OF

Cardinality Estimation

•Exact cardinality count
•Probabilistic counting
•Stochastic averaging
•Refinements
•Final frontier

Knuth’s insight: AofA is a scientific endeavor.
• Start with a working program (algorithm implementation).
• Develop mathematical model of its behavior.
• Use the model to formulate hypotheses on resource usage.
• Use the program to validate hypotheses.
• Iterate on basis of insights gained.

14

Don Knuth’s legacy: Analysis of Algorithms (AofA)

Understood since Babbage:
• Computational resources are limited.
• Method (algorithm) used matters.

Analytic Engine

how many times do we
have to turn the crank?

Difficult to overstate the significance of this insight.

AofA has played a critical role

in the development of our computational infrastructure

15

how many times
to turn the crank?

how long to sort random data for
cryptanalysis preprocessing?

how long to compile
my program? how long to check

that my VLSI circuit
follows the rules?

how quickly can I find clusters?
how many bodies

in motion can I
simulate?

and the advance of scientific knowledge

“PEOPLE WHO ANALYZE ALGORITHMS have double happiness. They experience the sheer beauty of elegant
mathematical patterns that surround elegant computational procedures. Then they receive a practical
payoff when their theories make it possible to get other jobs done more quickly and more economically.”

− Don Knuth

16

AofA/AC context

Theory
of

Computing

Practical computing

• Real code on real machines

• Thorough validation

• Limited math models

Theory of computing

• Theorems

• Abstract math models

• Limited experimentation

AofA/AC
• Theorems and code
• Scientific approach
• Experiment, validate, iterate

Practical
computing AofA/AC

109.108.229.102
pool-71-104-94-246.lsanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.lsanca.dsl-w.verizon.net
1.23.193.58
188.134.45.71
1.23.193.58
gsearch.CS.Princeton.EDU
pool-71-104-94-246.lsanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.lnse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com
pool-71-104-94-246.lsanca.dsl-w.verizon.net
gsearch.CS.Princeton.EDU
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
118-171-27-8.dynamic.hinet.net

17

A case in point: Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log?

A standard “Interview Question”.

log.07.f3.txt

6 million strings

???

18

Wrong answer: Check every value

Check every value
• Save all the values in an array.
• Check all previous values for duplicates.
• Count a value only if no previous duplicate.

Q. Why is this the wrong answer?

int[] a = StdIn.readAllLines();
int count = 1;
for (int i = 1; i < a.length; i++)
{
 for (int j = 0; j <= i)
 if (a[j] == a[i]) break;
 if (j != i) count++;
}
StdOut.print(count + " different values");

A. QUADRATIC running time, therefore not feasible for real-world applications.

Check every value!

NEXT!

19

Standard answer I: Sort, then count

Sort, then count
• Save all the values in an array.
• Sort the array.
• Equal values are together in the sorted input.
• Count the first occurrence of each value.

small example

15 9 9 4 10 9 11 12 10 14 12 11 15 6 11 9 8 5 10 2

sorted

2 4 5 6 8 9 9 9 9 10 10 10 11 11 11 11 12 14 15 15

count

1 2 3 4 5 6 7 8 9 10 11

 increment counter when current value
differs from previous value

20

Standard answer I: Sort, then count

Sort, then count
• Save all the values in an array.
• Sort the array.
• Equal values are together in the sorted input.
• Count the first occurrence of each value.

Used by programmers “in the wild” for decades

int[] a = StdIn.readAllLines();
Arrays.sort(a);
int distinct = 1;
for (int i = 1; i < a.length; i++)
 if (a[i] != a[i-1]) distinct++;
StdOut.print(distinct + " different values");

Sort, then count!

Programming Exam 1 COS 126 2015

% sort -u log.07.f3.txt | wc -l
1112365

UNIX (1970s-present)

“unique”

21

Aside: Existence table

Use an existence table
• Create an array b[] of boolean values.
• For value i, set b[i] to true.
• Count the number of true values in b[].

IF the values are positive integers less than U:

small example

15 9 9 4 10 9 11 12 10 14 12 11 15 6 11 9 8 5 10 2

existence table (U = 16)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TTT T T T TT TTT

Use an existence table!
✘

Not applicable to reference application (long strings) because U would be prohibitively large.✘

0 1 2 3 4 5

hash table (M = 6)

22

Standard answer II: Use a hash table

Hashing with separate chaining
• Create a table of size M.
• Transform each value into a “random” table index.
• Make linked lists for colliding values.
• Ignore values already in the table.

small example data stream 15 9 9 4 10 9 11 12 10 14 12 11 15 6 11 9 8 5 10 2

15

9

4

10

1112

6

14

8

hash values (x*97 % 6) 3 3 3 4 4 3 5 0 4 2 0 5 3 0 5 3 2 5 4 2

5

2 KEY IDEA. Keep lists short by resizing table.

example: multiply by a prime,
 then take remainder after dividing by M.

23

Exact cardinality count using a hash table

Widely used and well studied textbook method.

public static long count(Iterable<String> stream)
{
 HashSet<String> hset = new HashSet<String>();
 for (String x : stream)
 hset.add(x);
 return hset.size();
}

Exact cardinality count in Java

• Input is an “iterable”

• HashSet implements a hash table

• add() adds new value (noop if already there)

• size() gives number of distinct values added

Hashing with separate chaining
• Create a table of size M.
• Transform each value into a “random” table index.
• Make linked lists for colliding values.
• Ignore values already in the table.

24

Mathematical analysis of exact cardinality count with hashing

Theorem. If the hash function uniformly and independently distributes
the keys in the table, the expected time and space cost is LINEAR.

Q. Do the hash functions that we use uniformly and independently distribute keys in the table?

A. Not likely.

 based on classic probability theory
(binomial and Poisson distributions)

Proof. See Proposition K
 in Algorithms, page 466.

SEDGEWICK

WAYNE

$34.99 U.S. | $41.99 CANADA

Algorithms
F O U R T H E D I T I O N

Essential Information about Algorithms
and Data Structures

A C L A S S I C R E F E R E N C E
The latest version of Sedgewick’s best-selling series,
reflecting an indispensable body of knowledge developed
over the past several decades.

B R O A D C O V E R A G E
Full treatment of data structures and algorithms for sorting,
searching, graph processing, and string processing,
including fifty algorithms every programmer should know.
See algs4.cs.princeton.edu/code.

C O M P L E T E LY R E V I S E D C O D E
New Java implementations written in an accessible
modular programming style, where all of the code
is exposed to the reader and ready to use.

E N G A G E S W I T H A P P L I C AT I O N S
Algorithms are studied in the context of important scientific,
engineering, and commercial applications. Clients and
algorithms are expressed in real code, not the pseudo-code
found in many other books.

I N T E L L E C T U A L LY S T I M U L AT I N G
Engages reader interest with clear, concise text, detailed
examples with visuals, carefully crafted code, historical and
scientific context, and exercises at all levels.

A S C I E N T I F I C A P P R O A C H
Develops precise statements about performance, supported
by appropriate mathematical models and empirical studies
validating those models.

I N T E G R AT E D W I T H T H E W E B
Visit algs4.cs.princeton.edu for a freely accessible,
comprehensive Web site, including text digests, program
code, test data, programming projects, exercises, lecture
slides, and other resources.

informit.com/aw | algs4.cs.princeton.edu

CONTENTS

 FUNDAMENTALS
 Programming Model
Data Abstraction
Bags, Stacks, and Queues
Analysis of Algorithms
Case Study: Union-Find

 SORTING
Elementary Sorts
Mergesort
Quicksort
Priority Queues
Applications

 SEARCHING
Symbol Tables
Binary Search Trees
Balanced Search Trees
Hash Tables
Applications

 GRAPHS
Undirected Graphs
Directed Graphs
Minimum Spanning Trees
Shortest Paths

 STRINGS
String Sorts
Tries
Substring Search
Regular Expressions
Data Compression

 CONTEXT

Cover design by Chuti Prasertsith

 Text printed on recycled paper

ISBN-13:
ISBN-10:

978-0-321-57351-3
0-321-57351-X

9 7 8 0 3 2 1 5 7 3 5 1 3

5 7 9 9 9

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E
A

lgorithm
s

F
O

U
R

T
H

E

D
I

T
I

O
N

25

Scientific validation of exact cardinality count with linear probing

Hypothesis. Time and space cost is linear for the hash functions we use and the data we have.

Q. Is hashing with linear probing effective?

A. Yes! Validated in countless applications for over half a century.

Quick experiment. Doubling the problem size should double the running time.

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 StringStream stream = new StringStream(N);
 long start = System.currentTimeMillis(); 

 StdOut.println(count(stream));  

 long now = System.currentTimeMillis();
 double time = (now - start) / 1000.0;
 StdOut.println(time + " seconds");
}

% java Hash 2000000 < log.07.f3.txt
483477
3.322 seconds

% java Hash 4000000 < log.07.f3.txt
883071
6.55 seconds

% java Hash 6000000 < log.07.f3.txt
1097944
9.49 seconds ✓

% sort -u log.07.f3 | wc -l
1097944

sort-based method
takes about 3 minutes

Driver to read N strings and count distinct values

get problem size
initialize input stream

get current time

print count

print elapsed time

26

 Summary of cardinality count algorithms

time bound memory bound

Wrong answer N 2 N

Sort and count N log N N

Existence table N U

Hash table N N

Q. End of story?

A. No. Beginning of story!

Use a hash table!

Theoretical AofA. If (uniform hashing assumption) then hashing solution is linear (expected).

Scientific AofA. Hypothesis that hashing solution is linear has been validated for decades.

✽

Theoretical AofA. Hashing solution is quadratic in the worst case.✽

109.108.229.102
pool-71-104-94-246.lsanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.lsanca.dsl-w.verizon.net
1.23.193.58
188.134.45.71
1.23.193.58
gsearch.CS.Princeton.EDU
pool-71-104-94-246.lsanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.lnse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com
pool-71-104-94-246.lsanca.dsl-w.verizon.net
gsearch.CS.Princeton.EDU
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
118-171-27-8.dynamic.hinet.net

27

A problem: Exact cardinality count requires linear space

Q. I can’t use a hash table. The stream is much too big to fit all values in memory. Now what?

A. Bad news: You cannot get an exact count.

A. (Bloom, 1970) You can get an accurate estimate using a few bits per distinct value.

Help!

A. Much better news: You can get an accurate estimate using only a handful of bits (stay tuned).

OF

Cardinality Estimation

•Warmup: exact cardinality count
•Probabilistic counting
•Stochastic averaging
•Refinements
•Final frontier

typical
applications

29

is a fundamental problem with many applications where memory is limited.

Cardinality estimation

Q. About how many different values appear in a given stream?

Constraints
• Make one pass through the stream.
• Use as few operations per value as possible
• Use as little memory as possible.
• Produce as accurate an estimate as possible.

How many unique
visitors to my website?

How many different websites
visited by each customer? How many different values

for a database join?

To fix ideas on scope: Think of billions of streams each having trillions of values.

Which sites are the
most/least popular?

30

Probabilistic counting with stochastic averaging (PCSA)

Contributions
• Introduced problem
• Idea of streaming algorithm
• Idea of “small” sketch of “big” data
• Detailed analysis that yields tight bounds on accuracy
• Full validation of mathematical results with experimentation
• Practical algorithm that has remained effective for decades

Bottom line. Quintessential example of the effectiveness of scientific approach to algorithm design.

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.

Philippe Flajolet 1948-2011

00011000011010111100111111110010
00110100010001111100010100111010
01101001001000011100110100110011
01101001001000011100110100110011
01101001001000011100110100110011
01001110111100011000011101001101
01101001001000011100110100110011
01110101010110110000000011011010
01101001001000011100110100110011
01101001001000011100110100110011
01100001000111001001110010100000
00110100010001111100010100111010
01000011110111111101010110110001
01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011
00001001011011100000010010010111
00001001011011100000010010010111
00111000101001001011010101001100
00111000101001001011010101001100

31

PCSA first step: Use hashing

Transform value to a “random” computer word.
• Compute a hash function that transforms  

data value into a 32- or 64-bit value.
• Cardinality count is unaffected (with high probability).
• Built-in capability in modern systems.
• Allows use of fast machine-code operations.

21st century: use 64 bits (quadrillions of values)
20th century: use 32 bits (millions of values)

String value = “gsearch.CS.Princeton.EDU”
int x = value.hashCode();

 current Java default
is 32-bit int value

Bottom line: Do cardinality estimation on streams of (binary) integers.

Example: Java

• All data types implement a hashCode() method  
(though we often override the default).

• String data type stores value (computed once).

“Random” except for the fact
that some values are equal.

32

Initial hypothesis

No problem!

• AofA is a scientific endeavor (we always validate hypotheses).

• End goal is development of algorithms that are useful in practice.

• It is the responsibility of the designer to validate utility before claiming it.

• After decades of experience, discovering a performance problem due to 
a bad hash function would be a significant research result.

Hypothesis. Uniform hashing assumption is reasonable in this context.

Implication. Need to run experiments to validate any hypotheses about performance.

Unspoken bedrock principle of AofA.  
 Experimenting to validate hypotheses is WHAT WE DO!

33

Probabilistic counting starting point: two integer functions

Definition. r (x) is the number of trailing 1s in the binary representation of x.

Definition. R(x) = 2r

(x)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r(x) R (x) R (x)2
1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 2 1 0

1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1

0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 5 32 1 0 0 0 0 0

Bit-whacking basics:
R(x) is easy to compute.

3 instructions
on a typical
computer

position of rightmost 0

0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 x
1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 ~x
0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 x + 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ~x & (x + 1)

Bottom line: r (x) and R(x) can be computed with just a few machine instructions.

Bit-whacking magic:
r(x) is also “easy” to compute (don’t ask).

see Knuth volume 4A., page 141

available as a single instruction on modern processors

34

Probabilistic counting (Flajolet and Martin, 1983)

Maintain a single-word sketch that summarizes a data stream x0, x1, …, xN, …
• For each xN in the stream, update sketch by bitwise or with R(xN).
• Use position of rightmost 0 in sketch to estimate lg N.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sketch 0 0 0 0 0 0 0 1 0 1 1 0 1

xN 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1

R(xN) 0 1 0 0 0 0

sketch | R(xN) 0 0 0 0 0 0 0 1 0 1 1 0 1

typical sketch
N = 106

leading bits almost surely 0 trailing bits almost surely 1

estimate of lg N

R(x) = 2k
with probability

1/ 2k

Rough estimate of lgN is r (sketch).

correction factor needed (stay tuned) Rough estimate of N is R(sketch).

35

Probabilistic counting trace

x r(x) R(x) sketch

01100010011000111010011110111011 2 100 00000000000000000000000000000100

01100111001000110001111100000101 1 10 00000000000000000000000000000110

00010001000111000110110110110011 2 100 00000000000000000000000000000110

01000100011101110000000111011111 5 100000 00000000000000000000000000100110
01101000001011000101110001000100 0 1 00000000000000000000000000100111

00110111101100000000101001010101 1 10 00000000000000000000000000100111
00110100011000111010101111111100 0 1 00000000000000000000000000100111

00011000010000100001011100110111 3 1000 00000000000000000000000000101111

00011001100110011110010000111111 6 1000000 00000000000000000000000001101111
01000101110001001010110011111100 0 1 00000000000000000000000001101111

R(sketch) = 100002
 = 16

36

Probabilistic counting (Flajolet and Martin, 1983)

public long R(long x)
{ return ~x & (x+1); }

public long estimate(Iterable<String> stream)
{
 long sketch;
 for (s : stream)
 sketch = sketch | R(s.hashCode());
 return R(sketch);
}

Early example of “a simple algorithm whose analysis isn’t”

Maintain a sketch of the data
• A single word
• OR of all values of R(x) in the stream
• Return smallest value not seen

Q. (Martin) Estimate seems a bit low. How much?

A. (unsatisfying) Obtain correction factor empirically.

A. (Flajolet) Do the math. Without it, there is no algorithm!

 /.77351;
with correction for bias

37

Mathematical analysis of probabilistic counting

Theorem. The expected number of trailing 1s in the PC sketch is

and P is an oscillating function of lg N of very small amplitude.

Proof (omitted).

1980s: Flajolet tour de force

1990s: trie parameter

21st century: standard analytic combinatorics

In other words. In PC code, R(sketch)/.77351 is an unbiased statistical estimator of N.

lg(�N) + P(lgN) + o(1) where 𝜙 ≐�.77351

highest null
left of

right spine

trailing 1s
in sketch

Kirschenhofer, Prodinger, and Szpankowski

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.

Jacquet and Szpankowski

Analytical depoissonization and its applications, TCS 1998.

1 2 3 4 5 6 7 8 9 trials

100000

10 11 12 13 14 15 16 17 18 19 20

Experiment. 100,000 31-bit random values (20 trials)

38

Validation of probabilistic counting

Flajolet and Martin: Result is “typically one binary order of magnitude off.”

Of course! (Always returns a power of 2 divided by .77351.)

 16384/.77351 = 21181

 32768/.77351 = 42362

 65536/.77351 = 84725

 131072/.77351 = 169450

 …
Need to incorporate more experiments for more accuracy.

Hypothesis. Expected value returned is N for random values from a large range.

169450

84725

42362
21181

338900

OF

Cardinality Estimation

•Rules of the game
•Probabilistic counting
•Stochastic averaging
•Refinements
•Final frontier

40

Stochastic averaging

Goal. Perform M independent PC experiments and average results.

Alternative 3: Stochastic averaging
• Use second hash to divide stream into 2m independent streams
• Use PC on each stream, yielding 2m sketches .
• Compute mean = average number of trailing bits in the sketches.
• Return 2mean/.77531.

key point: equal values
all go to the same stream

Alternative 1: M independent hash functions? No, too expensive (and wasteful).

Alternative 2: M-way alternation? No, bad results for certain inputs.

01 02 03 04 01 02 03 04

01 01

02 02

03 03

04 04

01 02 03 04

01

02

03

04

10 11 39 21

09 07 07

11

23 22 22

31

11 09 07 23 31 07 22 22
21

39

10 11

41

PCSA trace

x R(x) sketch[0] sketch[1] sketch[2] sketch[3]

1010011110111011 100 0000000000000000 0000000000000000 0000000000000100 0000000000000000

0001111100000101 10 0000000000000010 0000000000000000 0000000000000100 0000000000000000

0110110110110011 100 0000000000000010 0000000000000100 0000000000000100 0000000000000000

0000000111011111 100000 0000000000100010 0000000000000100 0000000000000100 0000000000000000

0101110001000100 1 0000000000100010 0000000000000101 0000000000000100 0000000000000000

0000101001010101 10 0000000000100010 0000000000000101 0000000000000100 0000000000000000

1010101111111100 1 0000000000100010 0000000000000101 0000000000000101 0000000000000000

0001011100110111 1000 0000000000101010 0000000000000101 0000000000000101 0000000000000000

1110010000111111 1000000 0000000000101010 0000000000000101 0000000000000101 0000000001000000

1010110011111101 10 0000000000101010 0000000000000101 0000000000000111 0000000001000000

0001110100110100 1 0000000000101011 0000000000000101 0000000000000111

0000000000101011 0000000000000101 0000000000000111 0000000001000000

r (sketch[]) 2 1 3 0

M = 4use initial m bits
for second hash

42

Probabilistic counting with stochastic averaging in Java

public static long estimate(Iterable<Long> stream, int M)
{
 long[] sketch = new long[M];
 for (long x : stream)
 {
 int k = hash2(x, M);
 sketch[k] = sketch[k] | R(x);
 }
 int sum = 0;
 for (int k = 0; k < M; k++)
 sum += r(sketch[k]);
 double mean = 1.0 * sum / M;
 return (int) (M * Math.pow(2, mean)/.77351);
}

Flajolet-Martin 1983

Idea. Stochastic averaging

• Use hash to convert stream 
to integers and compute R
values as before

• Use second hash to split into  
M = 2m independent streams

• Use PC on each stream, yielding
2m sketches .

• Compute mean = average #
trailing 1 bits in the sketches.

• Return 2mean/.77351.

Observation. Accuracy improves as M increases.

Q. By how much?

Theorem (paraphrased to fit context of this talk).

Under the uniform hashing assumption, PCSA

• Uses 64M bits.

• Produces estimate with a relative accuracy
close to 0.78/

�
M

43

Validation of PCSA analysis

Hypothesis. Value returned is accurate to for random values from a large range.

% java PCSA 1000000 31 1024 10
964416
997616
959857
1024303
972940
985534
998291
996266
959208
1015329

0.78/
�
M

Experiment. 100,000 31-bit random values (10 trials)

1 2 3 4 5 6 7 8 9 10

96000

95000

100000

trials

44

Space-accuracy tradeoff for probabilistic counting with stochastic averaging

10245122561286432

10%

5%

Relative accuracy:
0.78�
M

Bottom line.
• Attain 10% relative accuracy with a sketch consisting of 64 words.
• Attain 2.4% relative accuracy with a sketch consisting of 1024 words.

M = 64

M = 1024

109.108.229.102
pool-71-104-94-246.lsanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.lsanca.dsl-w.verizon.net
1.23.193.58
188.134.45.71
1.23.193.58
gsearch.CS.Princeton.EDU
pool-71-104-94-246.lsanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.lnse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com
pool-71-104-94-246.lsanca.dsl-w.verizon.net
gsearch.CS.Princeton.EDU
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
118-171-27-8.dynamic.hinet.net

log.07.f3.txt

45

Scientific validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.

Q. Is PCSA effective?

A. ABSOLUTELY!

Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (!)

% java PCSA 6000000 1024 < log.07.f3.txt
1106474

Validation (RS, this morning).

<1% larger than actual value

46

is a demonstrably effective approach to cardinality estimation

Summary: PCSA (Flajolet-Martin, 1983)

Q. About how many different values are present in a given stream?

PCSA

• Makes one pass through the stream.
• Uses a few machine instructions per value
• Uses M words to achieve relative accuracy

Open questions
• Better space-accuracy tradeoffs?
• Support other operations?

✓
Results validated through extensive experimentation.

0.78/
�
M

“ IT IS QUITE CLEAR that other observable regularities on hashed
values of records could have been used…

− Flajolet and Martin

47

 Small sample of work on related problems

1970 Bloom set membership

1984 Wegman unbiased sampling estimate

1996– many authors refinements (stay tuned)

2000 Indyk L1 norm

2004 Cormode–
Muthukrishnan

frequency estimation
deletion and other operations

2005 Giroire fast stream processing

2012 Lumbroso full range, asymptotically unbiased

2014 Helmi–Lumbroso–
Martinez–Viola uses neither sampling nor hashing

OF

Cardinality Estimation

•Rules of the game
•Probabilistic counting
•Stochastic averaging
•Refinements
•Final frontier

49

logs and loglogs

To improve space-time tradeoffs, we need to carefully count bits.

Relevant quantities
• N is the number of items in the data stream.
• lg N is the number of bits needed to represent numbers less than N in binary.
• lg lg N is the number of bits needed to represent numbers less than lg N in binary.

For most applications
• N is less than 264.
• lg N is less than 64.
• lg lg N is less than 7.

Typical PCSA implementations
• Could use M lg N bits, in theory.
• Use 64-bit words to take advantage of machine-language efficiencies.
• Use (therefore) 64*64 = 4096 bits with M = 64 (for 10% accuracy with N < 264).

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing, PC, for any c >2,
• Uses O(log N) bits.
• Is accurate to a factor of c, with probability at least 2/c.

50

We can do better (in theory)

Contributions

• Studied problem of estimating higher moments

• Formalized idea of randomized streaming algorithms

• Won Gödel Prize in 2005 for “foundational contribution”

Alon, Matias, and Szegedy
 The Space Complexity of Approximating the Frequency Moments
 STOC 1996; JCSS 1999.

BUT, no impact on cardinality estimation in practice

• “Algorithm” just changes hash function for PC

• Accuracy estimate is too weak to be useful

• No validation

Replaces “uniform hashing” assumption
with “random bit existence” assumption

???!

51

Interesting quote

Points of view re hashing

• Theoretical computer science. Uniform hashing assumption is not proved.

• Practical computing. Hashing works for many common data types.

• AofA. Extensive experiments have validated precise analytic models.

Points of view re random bits

• Theoretical computer science. Random bits exist.

• Practical computing. No, they don’t! And randomized algorithms are inconvenient, btw.

• AofA. More effective path forward is to validate precise analysis even if stronger assumptions are needed.

No! That was a thought experiment that they addressed with stochastic averaging.
They also hypothesized that practical hash functions would be as effective as random ones.
They then validated that hypothesis by proving tight bounds that match experimental results.

“ Flajolet and Martin [assume] that one may use in the algorithm
an explicit family of hash functions which exhibits some ideal
random properties. Since we are not aware of the existence of
such a family of hash functions …”

− Alon, Matias, and Szegedy

52

We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan
 Counting Distinct Elements in a Data Stream
 RANDOM 2002.

STILL no impact on cardinality estimation in practice

• Infeasible because of high stream-processing expense.

• Big constants hidden in O-notation

• No validation

???!

Contributions
 Introduced the idea of using real numbers instead of bit patterns
 Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing, there exists an algorithm that
• Uses O(M log log N) bits.
• Achieves relative accuracy .O(1/

�
M)

PCSA uses M lg N bits

53

We can do better (in theory and in practice)

Durand and Flajolet
 LogLog Counting of Large Cardinalities
 ESA 2003; LNCS volume 2832.

Contributions (independent of BYJKST)

• Presents LogLog algorithm, an easy variant of PCSA

• Improves space-accuracy tradeoff without extra expense per value

• Full analysis, fully validated with experimentation

Theorem (paraphrased to fit context of this talk).
Under the uniform hashing assumption, LogLog
• Uses M lg lg N bits.
• Achieves relative accuracy close to .1.30/

�
M

Idea. Keep track of min(r (x)) for each stream.
• lg N bits can save a value (PCSA)
• lg lg N bits can save a bit index in a value

Practical impact. Deployed for network switches in a telecommunications system.

54

We can do better (in theory and in practice)

Flajolet, Fusy, Gandouet, and Meunier
HyperLogLog: the analysis of a near-optimal cardinality
estimation algorithm, AofA 2007; DMTCS 2007.

Idea. Use harmonic mean to dampen effect of outliers.

value of outlier

Illustrative example. 31 values equal to 20000
 1 outlier varying between 5000 and 80000

20000 40000 60000 80000

20000

21000

19000

arithmetic mean

harmonic 
mean

Arithmetic mean

X1 + X2 + X3 + . . . + XM
M

<latexit sha1_base64="1x1rS2BYXtoc0N6YaetxhwdvHfw=">AAACjnicbZHfSxtBEMc3Z2uttprYx74sDYpFCXdWUB9KhbbUB0UFo4EkHHt7k7hkfxy7c2I48h/0r+lr+4/0v+nemYqJDuzy3c/M7O7MJJkUDsPwby1YePFy8dXS6+WVN29X1+qN9StncsuhzY00tpMwB1JoaKNACZ3MAlOJhOtk9LX0X9+CdcLoSxxn0FdsqMVAcIYexfXNohNHdJt24t1q/0S3ezI16KrT6aRnfDY9jevNsBVWRp+KaCqaZGrncaN20UsNzxVo5JI5143CDPsFsyi4hMlyL3eQMT5iQ+h6qZkC1y+qgiZ0w5OUDoz1SyOt6OOMginnxirxkYrhjZv3lfA5XzfHwUG/EDrLETS/f2iQS4qGlt2hqbDAUY69YNwK/1fKb5hlHH0PZ16p7s6Az1RS3OVacJPCHJV4h5Z56AAVE7qsqjjLUKgH6G8r6dY3MRTodk78fPTODwsw+vg/0g8hmm/5U9HebR22wou95tH36TSWyHvygWyRiOyTI3JMzkmbcPKT/CK/yZ+gEewHn4Mv96FBbZrzjsxYcPwPxS3Ivg==</latexit><latexit sha1_base64="1x1rS2BYXtoc0N6YaetxhwdvHfw=">AAACjnicbZHfSxtBEMc3Z2uttprYx74sDYpFCXdWUB9KhbbUB0UFo4EkHHt7k7hkfxy7c2I48h/0r+lr+4/0v+nemYqJDuzy3c/M7O7MJJkUDsPwby1YePFy8dXS6+WVN29X1+qN9StncsuhzY00tpMwB1JoaKNACZ3MAlOJhOtk9LX0X9+CdcLoSxxn0FdsqMVAcIYexfXNohNHdJt24t1q/0S3ezI16KrT6aRnfDY9jevNsBVWRp+KaCqaZGrncaN20UsNzxVo5JI5143CDPsFsyi4hMlyL3eQMT5iQ+h6qZkC1y+qgiZ0w5OUDoz1SyOt6OOMginnxirxkYrhjZv3lfA5XzfHwUG/EDrLETS/f2iQS4qGlt2hqbDAUY69YNwK/1fKb5hlHH0PZ16p7s6Az1RS3OVacJPCHJV4h5Z56AAVE7qsqjjLUKgH6G8r6dY3MRTodk78fPTODwsw+vg/0g8hmm/5U9HebR22wou95tH36TSWyHvygWyRiOyTI3JMzkmbcPKT/CK/yZ+gEewHn4Mv96FBbZrzjsxYcPwPxS3Ivg==</latexit><latexit sha1_base64="1x1rS2BYXtoc0N6YaetxhwdvHfw=">AAACjnicbZHfSxtBEMc3Z2uttprYx74sDYpFCXdWUB9KhbbUB0UFo4EkHHt7k7hkfxy7c2I48h/0r+lr+4/0v+nemYqJDuzy3c/M7O7MJJkUDsPwby1YePFy8dXS6+WVN29X1+qN9StncsuhzY00tpMwB1JoaKNACZ3MAlOJhOtk9LX0X9+CdcLoSxxn0FdsqMVAcIYexfXNohNHdJt24t1q/0S3ezI16KrT6aRnfDY9jevNsBVWRp+KaCqaZGrncaN20UsNzxVo5JI5143CDPsFsyi4hMlyL3eQMT5iQ+h6qZkC1y+qgiZ0w5OUDoz1SyOt6OOMginnxirxkYrhjZv3lfA5XzfHwUG/EDrLETS/f2iQS4qGlt2hqbDAUY69YNwK/1fKb5hlHH0PZ16p7s6Az1RS3OVacJPCHJV4h5Z56AAVE7qsqjjLUKgH6G8r6dY3MRTodk78fPTODwsw+vg/0g8hmm/5U9HebR22wou95tH36TSWyHvygWyRiOyTI3JMzkmbcPKT/CK/yZ+gEewHn4Mv96FBbZrzjsxYcPwPxS3Ivg==</latexit>

Harmonic mean
M

1
X1

+
1
X2

+
1
X3

+ . . . +
1
XM

<latexit sha1_base64="36O5c1LXAT3bZDmp8Ww4BGtfT58=">AAACwHicbZFLbxMxEMed5dFSHk3hyMUiQiqiinYLUuFWqSA4UNFKhEbKRpHXO0mteG1jz6Iu1n41vgd3rvAZ8G7DY1NGsvSf34w9npnMSOEwjr/1omvXb9zc2Ly1dfvO3Xvb/Z37H50uLYcR11LbccYcSKFghAIljI0FVmQSzrLlURM/+wzWCa0+YGVgWrCFEnPBGQY064/9capDgk9z4YxklcNKgk9aSMezpKZP6V93v+s+C24qc42ug4/rup71B/Ewbo1eFclKDMjKTmY7vdM017wsQCGXzLlJEhucemZRcAn1Vlo6MIwv2QImQSpWgJv6dgQ1fRxITufahqOQtvTfG54VzlVFFjILhuduPdbA/8UmJc5fTL1QpkRQ/LLQvJQUNW3mSXNhgaOsgmDcivBXys+ZZRzD1DtV2rcN8E4n/qJUgusc1qjEC7QsQAdYMKGarvx7g6L4A8NrDd19JRYC3d67sFG198YCLJ/8zgxLSNZHflWM9ocvh/Hp88Hh69U2NslD8ojskoQckEPylpyQEeHkK/lOfpCf0VEkIh19ukyNeqs7D0jHoi+/AOR/3pE=</latexit><latexit sha1_base64="36O5c1LXAT3bZDmp8Ww4BGtfT58=">AAACwHicbZFLbxMxEMed5dFSHk3hyMUiQiqiinYLUuFWqSA4UNFKhEbKRpHXO0mteG1jz6Iu1n41vgd3rvAZ8G7DY1NGsvSf34w9npnMSOEwjr/1omvXb9zc2Ly1dfvO3Xvb/Z37H50uLYcR11LbccYcSKFghAIljI0FVmQSzrLlURM/+wzWCa0+YGVgWrCFEnPBGQY064/9capDgk9z4YxklcNKgk9aSMezpKZP6V93v+s+C24qc42ug4/rup71B/Ewbo1eFclKDMjKTmY7vdM017wsQCGXzLlJEhucemZRcAn1Vlo6MIwv2QImQSpWgJv6dgQ1fRxITufahqOQtvTfG54VzlVFFjILhuduPdbA/8UmJc5fTL1QpkRQ/LLQvJQUNW3mSXNhgaOsgmDcivBXys+ZZRzD1DtV2rcN8E4n/qJUgusc1qjEC7QsQAdYMKGarvx7g6L4A8NrDd19JRYC3d67sFG198YCLJ/8zgxLSNZHflWM9ocvh/Hp88Hh69U2NslD8ojskoQckEPylpyQEeHkK/lOfpCf0VEkIh19ukyNeqs7D0jHoi+/AOR/3pE=</latexit><latexit sha1_base64="36O5c1LXAT3bZDmp8Ww4BGtfT58=">AAACwHicbZFLbxMxEMed5dFSHk3hyMUiQiqiinYLUuFWqSA4UNFKhEbKRpHXO0mteG1jz6Iu1n41vgd3rvAZ8G7DY1NGsvSf34w9npnMSOEwjr/1omvXb9zc2Ly1dfvO3Xvb/Z37H50uLYcR11LbccYcSKFghAIljI0FVmQSzrLlURM/+wzWCa0+YGVgWrCFEnPBGQY064/9capDgk9z4YxklcNKgk9aSMezpKZP6V93v+s+C24qc42ug4/rup71B/Ewbo1eFclKDMjKTmY7vdM017wsQCGXzLlJEhucemZRcAn1Vlo6MIwv2QImQSpWgJv6dgQ1fRxITufahqOQtvTfG54VzlVFFjILhuduPdbA/8UmJc5fTL1QpkRQ/LLQvJQUNW3mSXNhgaOsgmDcivBXys+ZZRzD1DtV2rcN8E4n/qJUgusc1qjEC7QsQAdYMKGarvx7g6L4A8NrDd19JRYC3d67sFG198YCLJ/8zgxLSNZHflWM9ocvh/Hp88Hh69U2NslD8ojskoQckEPylpyQEeHkK/lOfpCf0VEkIh19ukyNeqs7D0jHoi+/AOR/3pE=</latexit>

Practical impact. Full analysis and validation allows immediate deployment in applications.

55

We can do better: HyperLogLog algorithm (2007)

public static long estimate(Iterable<Long> stream, int M)
{
 int[] bytes = new int[M];
 for (long x : stream)
 {
 int k = hash2(x, M);
 if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x);
 }
 double sum = 0.0;
 for (int k = 0; k < M; k++)
 sum += Math.pow(2, -1.0 - bytes[k]);
 return (int) (alpha * M * M / sum);
}

Flajolet-Fusy-Gandouet-Meunier 2007

Ideas.
• Use stochastic averaging.
• Keep track of min(r (x))

for each stream.
• Use harmonic mean.

Theorem (paraphrased to fit context of this talk).
Under the uniform hashing assumption, HyperLogLog

• Uses M log log N bits.
• Achieves relative accuracy close to .1.02/

�
M

lg lg N bits

56

Space-accuracy tradeoff for HyperLogLog

102451225612864

10%

5%

Relative accuracy:

Bottom line (for N < 264).
• Attain 12.5% relative accuracy with a sketch consisting of 64x6 = 396 bits.
• Attain 3.1% relative accuracy with a sketch consisting of 1024x6 = 6144 bits.

1.02�
M

Yay!

M = 64

M = 1024

57

PCSA vs Hyperloglog

Typical PCSA implementations
• Could use M lg N bits, in theory.
• Use 64-bit words to take advantage of machine-language efficiencies.
• Use (therefore) 64*64 = 4096 bits with M = 64 (for 10% accuracy with N < 264).

Typical Hyperloglog implementations
• Could use M lg lg N bits, in theory.
• Use 8-bit bytes to take advantage of machine-language efficiencies.
• Use (therefore) 64*8 = 512 bits with M = 64 (for 10% accuracy with N < 264).

58

Right answer: Hyperloglog

Divide into M streams (stochastic averaging)
• Keep track of min(# trailing 1s).
• Use harmonic mean.

Hyperloglog!

!!!

public static long estimate(Iterable<Long> stream, int M)
{
 byte[] bytes = new byte[M];
 for (long x : stream)
 {
 int k = hash2(x, M);
 if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x);
 }
 double sum = 0.0;
 for (int k = 0; k < M; k++)
 sum += Math.pow(2, -1.0 - bytes[k]);
 return (int) (alpha * M * M / sum);
}

59

Validation of Hyperloglog

S. Heule, M. Nunkesser and A. Hall 
HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.  
Extending Database Technology/International Conference on Database Theory 2013.

Philippe Flajolet, mathematician, data scientist, and computer scientist extraordinaire

Philippe Flajolet 1948-2011

For more information about Philippe Flajolet's pioneering contribution to data streaming algorithms, see  
 J. Lumbroso, How Flajolet Processed Streams with Coin Flips, https://arxiv.org/abs/1805.00612.

https://arxiv.org/abs/1805.00612

OF

Cardinality Estimation

•Rules of the game
•Probabilistic counting
•Stochastic averaging
•Refinements
•Final frontier

62

We can do a bit better (in theory) but not much better

Kane, Nelson, and Woodruff
 Optimal Algorithm for the Distinct Elements Problem, PODS 2010.

Upper bound

Lower bound

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing there exists an algorithm that
• Uses O(M) bits.
• Achieves relative accuracy .

Unlikely to have impact on cardinality estimation in practice

• Tough to beat HyperLogLog’s low stream-processing expense.

• Constants hidden in O-notation not likely to be < 6

• No validation

O(1/
�
M)

Indyk and Woodruff
 Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.

Theorem (paraphrased to fit context of this talk).
Any algorithm that achieves relative accuracy must use bitsO(1/

�
M) Ω(M)

loglogN improvement possible

optimal

63

Can we beat HyperLogLog in practice?

Necessary characteristics of a better algorithm
• Makes one pass through the stream.
• Uses a few dozen machine instructions per value
• Uses a few hundred bits
• Achieves 10% relative accuracy or better

machine instructions
per stream element

memory
bound

memory bound
when N < 264

bits for
10% accuracy
when N < 264

HyperLogLog 20–30 M loglog N 6M 768

BetterAlgorithm a few dozen a few
hundred

Also, results need to be validated through extensive experimentation.

I love HyperLogLog

“ I’ve long thought that there should be a simple algorithm that uses a small constant times M bits…”

− Jérémie Lumbroso

64

A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M)
{
 int lgN = 5;
 long sketch = 0;
 long sketch2 = 0;
 for (String x : stream)
 {
 long x = hash(s);
 int k = hash2(x, 64);
 if (r(x) > lgN) sketch = sketch | (1L << k);
 if (r(x) > lgN + 1) sketch2 = sketch2 | (1L << k);
 if (p(sketch) > 31)
 { sketch = sketch2; lgN++; sketch2 = 0; }
 }
 return (int) (Math.pow(2, lgN + 5.4 + p(sketch)/32.0));
}

Idea.

• lgN is estimate of

• sketch is 64 indicators 
 whether to increment lgN

• sketch2 is is 64 indicators 
 whether to increment lgN 
 by 2

• Update when half the bits  
 in sketch are 1

lgN

bias (determined empirically)

65

Initial experiments

% java Hash 1000000 < log.07.f3.txt
242601
% java Hash 2000000 < log.07.f3.txt
483477
% java Hash 4000000 < log.07.f3.txt
883071
% java Hash 6000000 < log.07.f3.txt
1097944

Exact values for web log example

% java HyperBitBit 1000000 < log.07.f3.txt
234219
% java HyperBitBit 2000000 < log.07.f3.txt
499889
% java HyperBitBit 4000000 < log.07.f3.txt
916801
% java HyperBitBit 6000000 < log.07.f3.txt
1044043

HyperBitBit estimates

Conjecture. On practical data, HyperBitBit, for N < 264,
• Uses 128 + 6 bits.
• Estimates cardinality within 10% of the actual.

1,000,000 2,000,000 4,000,000 6,000,000

Exact 242,601 483,477 883,071 1,097,944

HyperBitBit 234,219 499,889 916,801 1,044,043

ratio 1.05 1.03 0.96 1.03

Next steps.
• Analyze.
• Experiment.
• Iterate.

66

 Summary for cardinality estimation algorithms

time
bound memory bound (bits)

bits for
10% accuracy

for 1 billion inputs

Wrong answer N 2 N lg N 64 billion

Sort and count N log N N lg N 64 billion

Existence table N U 1 billion

Hash table N N lg N 64 billion

PCSA N M lg N 4096

HyperLogLog N M lglg N 512

HyperBitBit ? N 2M + lglg N 134

✽

✽

✽

✽

OF

A Case Study: Cardinality Estimation

•Exact cardinality count
•Probabilistic counting
•Stochastic averaging
•Refinements

68

Why study analysis of algorithms and analytic combinatorics?

HyperLogLog is a case in point.

• Impact is broad and far-reaching.

• Old roots, new opportunities.

• Allows solution of otherwise unsolvable problems.

• Intellectually stimulating.

• Implementations teach programming proficiency.

• May unlock the secrets of life and of the universe.

• Useful for fun and profit.

✓
✓
✓
✓
✓

who knows?

✓

HyperLogLog

Analysis of Algorithms

http://aofa.cs.princeton.edu
http://ac.cs.princeton.edu

O r i g i n a l M O O C t i t l e : A N A L Y T I C C O M B I N A T O R I C S , P A R T O N E

O r i g i n a l M O O C t i t l e : A N A L Y T I C C O M B I N A T O R I C S , P A R T T W O

Analytic Combinatorics

