Analysis of Algorithms

Original MOOC title: ANALYTIC COMBINATORICS, PART ONE

i Analytic Combinatorics

Philippe Flajolet and
Robert Sedgewick

Original MOOC title: ANALYTIC COMBINATORICS, PART TWO

http://aofa.cs.princeton.edu

http://ac.cs.princeton.edu

Overview

Analysis of algorithms
e Methods and models for the analysis of algorithms.
e Basis for a scientific approach.
e Mathematical methods from classical analysis. ALGORITHMS
e Combinatorial structures and associated algorithms. |

Analytic combinatorics

Analytic
Combinatorics

e Study of properties of large combinatorial structures.
e A foundation for analysis of algorithms, but widely applicable.
e Symbolic method for encapsulating precise description. Philippe Flajolet and

Robert Sedgewick

e Complex analysis to extract useful information.

Are these courses for me?

Sure, if you can answer “yes” to these questions.
e Do you like to program?

e Do you like math? ‘

»H
e Have you studied Algorithms? ' i

e Would you like to be able to read Knuth’s books?

L

NEW Ny R |
NEW NEW NEW INEY N : NEW NEWI NEY NEWLY AVAILABLE SECTION OF
' " ‘ E

THE CLASSIC WORK

TH TH ThH Th Th The Th Th(The Th TheArt of
C{ C¢ Cq Cg Co Cor Co Coi Cot Cc Computer
Pt Pri Pr Pr¢ Pr¢ Pro Pr Prc PI’O‘ Pr« Programmjng s

VOLI VOL VOLI voru| voru VOLUM VOMI VOLUN VOLUMI

VOLU ~

Fun Sen Sor|f Intro¢ Coml Bf‘“’“_‘ GENd Gener Generd Mathe —
Thir thil Secd COmH Part1 1%‘““" Tuplt Comt History| Prelin /e ._—-—/-
and E Binary P'eri and p Generat Backt RS ——

Diagras Danci Satisfiability FASCICLS .) 7

D e and Flajolet’s pap —

S o i O D& Bl)] D DovaE Kwm dn djoliel S papers: —

| A AR Bl TS i " —

Q. Why study the analysis of algorithms and analytic combinatorics?

A. For many of the same reasons we study algorithms (next)!

Why study the analysis of algorithms and analytic combinatorics?

Their impact is broad and far-reaching.

Internet. Web search, packet routing, file sharing, ...
Biology. Human genome project, protein folding, ...
Computer design. Circuit layout, file system, compilers,
Multimedia. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines,
Social networks. Recommendations, news feeds, advertisements,
Physics. N-body simulation, particle collision simulation,

Big data. Deep learning, autonomous vehicles,

Why study the analysis of algorithms and analytic combinatorics?

Old roots, new opportunities.
“father of analysis of algorithms”

e Analysis of algorithms dates at least to Euclid.

e Practiced by Turing and von Neumann in 1940s. “father of analytic combinatorics”
e Mostly developed by Knuth starting in 1960s.
e Steady evolution for decades.

e Analytic combinatorics dates to Euler and earlier.

Don Knuth

e Mostly developed by Flajolet starting in 1980s. S
e Many algorithms are waiting to be understood. Philippe Flajolet
e Many theorems are waiting to be discovered.

“If | have seen further, it is by
standing on the shoulders of giants.”

— [saac Newton

Why study the analysis of algorithms and analytic combinatorics?

To solve problems that could not otherwise be addressed.

Example: Cardinality estimation (stay tuned).

pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.1sanca.dsl-w.verizon.net

1.23.193.58

188.134.45.71

1.23.193.58

gsearch.CS.Princeton.EDU
pool-71-104-94-246.1sanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua <«—— How many of these are different?
81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua
CPE-121-218-151-176.1nse3.cht.bigpond.net.au
117.211.88.36

msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com
pool-71-104-94-246.1sanca.dsl-w.verizon.net
gsearch.CS.Princeton.EDU
CPEOOlcdfbc55ac-CM0011ae926eb6¢c.cpe.net.cable.rogers.com
CPEOOlcdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com
118-171-27-8.dynamic.hinet.net

cne-76-170-182-222 .socal.res.rr.com

Why study the analysis of algorithms and analytic combinatorics?

For intellectual stimulation.

“The point of mathematics is that in it we have always got rid of the

particular instance, ... no mathematical truths apply merely to fish, or
merely to stones, or merely to colours. So long as you are dealing with
pure mathematics, you are in the realm of complete and absolute
abstraction. ... Mathematics is thought moving in the sphere of complete
abstraction from any particular instance of what it is talking about.

Abstract Thought 379, by Theo Dapore

— Alfred North Whitehead

“Here's to pure mathematics—may it never be of any use to anybody.”

— attributed to G. H. Hardy

Why study the analysis of algorithms and analytic combinatorics?

They may unlock the secrets of life and of the universe.

“Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general
ideas of operation which will bring together in simple, logical and unified form the largest
possible circle of formal relationships. In this effort toward logical beauty spiritual
formulas are discovered necessary for the deeper penetration into the laws of nature.”

— Albert Einstein

Why study the analysis of algorithms and analytic combinatorics?

For fun and profit. ﬂ

Cisco SYSTEMS

A Upstart

m Al

ETFH)(Adobe

GO gle ®'s~ff

Morgan Stanle

DEShaw&Co ORACLE .

YAHOO! A /\ amazoncom Microsoft
, awbnb

- Qs

SECURITY"

Why study the analysis of algorithms and analytic combinatorics?

Some compelling reasons
e Their impact is broad and far-reaching.
e Old roots, new opportunities.
e To solve problems that could not otherwise be addressed.
e For intellectual stimulation.
e They may unlock the secrets of life and of the universe.

e For fun and profit.

<Why study anything else?>

This lecture. A case in point.

|0

Context for this lecture

Purpose. Prepare for the study of the analysis of algorithms in the context of an important application.

Assumed. Familiarity with undergraduate-level Java programming, computer science, and algorithms.

For reference.

textbooks online lectures

Algorithms

T R
K
e
S&T N

OMPUTER
SCIENCE

. An Interdisciplinary Approach

ROBERT SEDGEWICK
KEVIN WAYNE

booksites

COoMPUTER
SCIENCE

INTRO TO PROGRAMMING

& introcs.cs.princeton.edu ¢ i}

COMPUTER SCIENCE: AN INTERDISCIPLINARY APPROACH

a textbook for a first course in computer science
for the next generation
of scientists and engineers

Textbook. Our textbook Computer Science [Amazon - Pearson - InformiT] is an interdisciplinary approach to the traditional CS1 curriculum with Java. We teach the classic
elements of programming, using an "objects-in-the-middie” approach that emphasizes data abstraction. We motivate each concept by examining its impact on specific
applications, taken from fields ranging from materals science to genomics to astrophysics to internet commerce.

Iyl
||5!"| I T

Algorithms

FOURTH EDITION

REOBERY SHDOIWICK | KEVIN WATYNE

Algorithms

= 3 algsa.cs.princeton.edu < ul

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Amazon - Pearson - InformIT | surveys the most important algorithms and data
structures In use today. We motivate each algorithm that we address by examining its impact on applications to science, engineering, and industry. The textbook is organized into

1. Elements of Programming (A Eundameniaie) six chapters:
Boae The first half of the book (available separately as Introduction to Programming in Java) is organized around four stages of learning to program: 5 :
unctions
2 oor « Chapter 1: Eloments of Programming introduces variables; assignment statements; buit-n types of ceta; condltonals and loops; anays; and inputioutout, nclucing 3. Searching « Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our programming model,
4. Data Structures graphics and sound, 4. Graphs * Chapter 2: Sorting considers several dlassic sorting algorithms, including insertion sort, mergesort, and quicksort, It also features a binary heap implementation of a priority
COMPUTER SCIENCE « Chapter 2: Functions highlights the idea of dividing a program into components that can be independently debugged, maintained, and reused. SED Queue.
6. Context .

5. Theory of Computing
6. AComputing Machine

7. Building a Comput

BevonD

8. Systems
9. Sclentific Computation
ReLATED BooksiTes

E

« Chapter 3: Object-Oriented Programming emphasizes the concept of a data type and its implementation, using Java's class mechanism.
o Chapter 4: Algorithms and Data Structures discusses classical algorithms for sorting and searching, and fundamental data structures, including stacks, queues, and symbol
tables.

The second half of the book explores core ideas of Turing, von Neumann, Shannon, and others that ignited the digital age.

Chapter 5: Theory of Computing surveys the fundamental concepts of universalty, computabilty, and intractability, which raise questions about the role of computation in
understanding the natural world.

Chapter 6: A Computing Machine describes a simple imaginary machine that has many of the characteristics of real processors at the heart of the computational devices
that surround us.

Chapter 7: Building a Computer considers the design of a processor, including Boolean logic, combinational circuits, and sequential circuts.

Code

RELATEB BooKsITES

Chapter 3: Searching describes several classic symbol-table implementations, including binary search trees, red-black trees, and hash tables.

Chapter 4: Graphs surveys the most important graph-processing problems, including depth-first search, breadth-first search, minimum spanning trees, and shortest paths.

Chapter 5: Strings investigates specialized algorithms for string processing, including radix sorting, substring search, tries, regular expressions, and data compression.

Chapter 6: Context highlights connections to systems programming, scientific computing, commercial applications, operations research, and intractabilty.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while programming and while browsing
the web); the textbook is for your use when initally learning new material and when reinforcing your understanding of that material (for example, when reviewing for an exam). The
booksite consists of the following elements:

* Excerpts. A condensed version of the text narrative, for reference while online.

o Java code. The algorithms and clients [algs4 - github] in this textoook.

WeB Resources Ein
= Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while programming and whie browsing Sreatonet o Exercise solutions. Solutions to selected exercises.
praa the web); the textbook is for your use when nitially learing new material and when reinforcing your understanding of that material (for example, when reviewing for an exam). The
Data Esferencos) For students:
booksite consists of the following elements: d
Code Online Course
— « Excerpts. A condensed version of the text narrative for reference while online PP —— o Java. Here are instructions for setting up a simple Java programming environment for Mac OS X &, Windows
Lectures « Brercises. Hundreds of exercises and some solutions. Programming Assignments o Lecture videos. The deluxe edition includes professionally produced lecture videos.
iAppendic « Online course. You can take our free Coursera MOOGs Algorithms, Part |0 and Algorithms, Part Il o

Programming Assignments

« Java code. Hundreds of easlly downloadable Java programs, real-world data sets, and our /O libraries for processing text, graphics, and sound.

For students:

o Java i . Here are instructions for setting up a simple Java programming environment for Mac OS X &, Windows &2, and Linux A.

* Studio-produced lecture videos. Available from InformiT.

For instructors:

* Toadopt. You can request an examination copy o ask the authors for more information. Here is the preface <. ACM/IEEE cites COS 226 8 as a course exemplar in
CS2013 =

a

A !i . Computer Science
W

+

... or whatever other resources you might have used to learn these topics

Cardinality Estimation

ANALYSIS
ALGORITHMS

Robert Sedgewick
Princeton University

http://aofa.cs.princeton.edu

with special thanks to Jeremie Lumbroso

* Refinements

Don Knuth’s legacy: Analysis of Algorithms (AofA)

Understood since Babbage:
e Computational resources are limited.
e Method (algorithm) used matters.

Analytic Engine

Knuth’s insight: AofA is a scientific endeavor.
e Develop mathematical model of its behavior.

e Use the program to validate hypotheses.

e Start with a working program (algorithm implementation).

e Use the model to formulate hypotheses on resource usage.

how many times do we
have to turn the crank?

e Iterate on basis of insights gained.

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of
Computer
Programming

Difficult to overstate the significance of this insight. | e

DONALD E. KNUTH

The Art of
Computer
Programming

Seminumerical Algorithms

DONALD E. KNUTH

The Art of
Computer
Programming

UME 3
Sorting and Searching

DONALD E. KNUTH

The Art of
Computer
Programming

Combinatorial Algorithms
Part 1

DONALD E. KNUTH

14

AofA has played a critical role

in the development of our computational infrastructure and the advance of scientific knowledge

how long to sort random data for

. cryptanalysis preprocessing?
how many times / P y>ls Prep J
4« to turn the crank?

how Iong to Complle AARR ;“E“;‘u Il ST L":%TﬁEL e
R ‘ 11 201 Vi titt 1525 : - ‘“'.
my program? —— how long to check ARAAR R SO ID =Sty st
W conny g e | bl g i L e 1
v//rmos n\d:k & that my VLSI CIFCUIt \liﬁt”d}ﬁ& <;q'- Eﬁ#'x | 5 |:"' . F‘ v
' g AT :-»Lu o dsin R .?;4 el E:u = M - - r.‘:” ..".;
\':%'"" } follows the rules? .-'-q,;;;;g; A mEE o ot
— . 1= ".*_' 13 3 134 =z3 : ?
e dﬁui* Fall cCanZiTi sl Moo :

i dels USRI - .

433! ALP Fo '“ Seeeis! 213

e \ how many bodies <

B . - : :
S R In motlon can | <«— how quickly can | find clusters?
e e simulate?

“PEOPLE WHO ANALYZE ALGORITHMS have double happiness. They experience the sheer beauty of elegant
mathematical patterns that surround elegant computational procedures. Then they receive a practical
payoff when their theories make it possible to get other jobs done more quickly and more economically.”

— Don Knuth 15

AofA/AC context

Theory
of
Computing

AofA/AC

Practical computing AofA/AC Theory of computing
 Real code on real machines e Theorems and code e Theorems
e Thorough validation e Scientific approach e Abstract math models

e Limited math models o Experiment, validate, iterate e Limited experimentation

|6

A case in point: Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log?

log.07.f3.txt

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163

pool-71-104-94-246.1sanca.dsl-w.verizon.net
1.23.193.58
188.134.45.71 =

1.23.193.58 /f} |
gsearch.CS.Princeton.EDU [\y 5:%
pool-71-104-94-246.1sanca.dsl-w.verizon.net ‘Q 7
81.95.186.98.freenet.com.ua)
81.95.186.98.freenet.com.ua | J 6132§——gfigé§i§%4%;\
81.95.186.98.freenet.com.ua i “\\{Z
CPE-121-218-151-176.1nse3.cht.bigpond.net.au | \\ _;iéij
6 million strings - Z@%%
- R e \/

A standard “Interview Question’.
|7

Wrong answer: Check every value

Check every value
e Save all the values in an array.
e Check all previous values for duplicates.
e Count a value only if no previous duplicate.

int[] a = StdIn.readAllLines();
1nt count = 1;

for (int 1 = 1; 1 < a.length; 1++) , Check every valuelw
{

for (Aint] =0;] <= 1)
1t (a[j] == a[1]) break;
1T (3 = 1) count++;
}
StdOut.print(count + " different values");

Q. Why is this the wrong answer?

A. QUADRATIC running time, therefore not feasible for real-world applications.

Standard answer |: Sort, then count

Sort, then count
e Save all the values in an array.
e Sort the array.
e Equal values are together in the sorted input.
e Count the first occurrence of each value.

small example

15 9 9 4 10 9 11 12 10 14 12 11 15 ©

sorted

2 4 5 o6 8 9 9 9 9 10 10 10 11 11

1 2 3 4 5 © / 8

T

increment counter when current value
differs from previous value

11 9 8 5 10 2

11 11 12 14 15 15

) 0@

19

Standard answer |: Sort, then count

Sort, then count
e Save all the values in an array.
e Sort the array.
e Equal values are together in the sorted input.
e Count the first occurrence of each value.

int[] a = StdIn.readAllLines();
Arrays.sort(a);
1nt distinct = 1;
for (Aint 1 =1; 1 < a.length; 1++)

1t (al1] !'= al[i1-1]) distinct++;
StdOut.print(distinct + " different values");

Used by programmers “in the wild” for decades

UNIX (1970s-present)

% sort@1og.07.f3.txt | wc -1

1112365 S
unique

Sort, then count!)

@

L R

Programming Exam 1 COS 126 2015

Programming Exam: Count Distinct Values

Part 1. Your task is to write programs that find the number of distinct values among the integers
on standard input, assuming that the input is nonempty and in sorted order.

Your task. Add code to this template (the file count1.java that you have downloaded):

public class Countl
{

public static veoid main(String[] args)

{
int count = 1;
int distinct = 1;

// YOUR CODE HERE

}
}

Your code must print the number of integers on standard input and the number of distinct
values among those integers.

Example. Test your program with the file testcount1tiny.txt, which has 18 integers having
six distinct values (1, 2, 4, 5, 6,and 9). Your program must behave as follows:

$ more testCountltiny.txt
111122224444556¢62925

$ java Countl < testCountltiny.txt

20

Aside: Existence table

IF the values are positive integers less than U: x Use an existence table!)

Use an existence table (ﬁ}

e Create an array b[] of boolean values. :;O' @
e For value 1, set b[1] to true. | 2 L/////\
|) v/ /ZJ‘—‘@M
=

e Count the number of true values in b[].

small example

15 9 9 4 10 9 11 12 10 14 12 11 15 o 11 9 8 5 10 2

existence table (U = 16)
0 1 2 3 4

5 6 7
T T T T

x Not applicable to reference application (long strings) because U would be prohibitively large.

21

Standard answer ll: Use a hash table

Hashing with separate chaining
e Create a table of size M.
e Transform each value into a “random” table index.
e Make linked lists for colliding values.
e [gnore values already in the table.

example: multiply by a prime,
then take remainder after dividing by M.

small example data streem 15 9 9 4 10 9 11 12 10 14 12 11 15 6 11 9 &8 5 10 2

hash values (x*97 % 6) 3 3 3 4 4 3 5 0O 4 2 0 5 3 0 5 3 2 5 4 2

hash table (M = 6)

o le— T [e—
© [— 7 [—
nle— O [

N [e—| 00 fe— I le—

KEY IDEA. Keep lists short by resizing table.

22

Exact cardinality count using a hash table

Hashing with separate chaining
e Create a table of size M.

e Transform each value into a “random’ table index.

e Make linked lists for colliding values.
e [gnore values already in the table.

Widely used and well studied textbook method.

Exact cardinality count in Java
e Input is an “iterable”
e HashSet implements a hash table
e add() adds new value (noop if already there)
e s1ze() gives number of distinct values added

COMPUTER
 SCIENCE

' An Interdisciplinary Approach

public static long count(Iterable<String> stream)
{
HashSet<String> hset = new HashSet<String>();
for (String x : stream)

hset.add(x);
return hset.size();

23

Mathematical analysis of exact cardinality count with hashing

Theorem. If the hash function uniformly and independently distributes
the keys in the table, the expected time and space cost is LINEAR.

Proposition K. In a separate-chaining hash table with M lists and N keys, the prob-
ability (under assumpTiON J) that the number of keys in a list is within a small
constant factor of N/M is extremely close to 1.

Proof sketch: assumpTiON J makes this an application of classical probability
theory. We sketch the proof, for readers who are familiar with basic probabilistic
analysis. The probability that a given list will contain exactly k keys is given by the
binomial distribution

(10,.12511

Proof. See Proposition K T <t
- p paey o N
in Algorithms, page 466. ottt 1

by the following argument: Choose k out of the N keys. Those k keys hash to the
given list with probability 1/M, and the other N — k keys do not hash to the given
list with probability 1 —(1/M). In terms of « = N/M, we can rewrite this expres-

sion as (N)(L)k(l i L)N_k
k/\N N

which (for small «) is closely

approximated by the classical

based on classic probability theory Pofson disribuson au
. - . i I I ﬁ afe @ i | | g —
(binomial and Poisson distributions) : A

Poisson distribution (N = 104, M= 103, a = 10)

It follows that the probability that a list has more than ¢ « keys on it is bounded
by the quantity (« e/r)*e—=. This probability is extremely small for practical ranges
of the parameters. For example, if the average length of the lists is 10, the prob-
ability that we will hash to some list with more than 20 keys on it is less than (10
e/2)%e-10 = 0.0084, and if the average length of the lists is 20, the probability that
we will hash to some list with more than 40 keys on it is less than (20 e/2)2e-20
= (.0000016. This concentration result does not guarantee that every list will be
short. Indeed it is known that, if « is a constant, the average length of the longest
list grows with log N/ log log N.

Q. Do the hash functions that we use uniformly and independently distribute keys in the table?

A. Not likely.

Scientific validation of exact cardinality count with linear probing

Hypothesis. Time and space cost is linear for the hash functions we use and the data we have.

Quick experiment. Doubling the problem size should double the running time.

get problem size
initialize input stream
get current time

print count

print elapsed time

{

Driver to read N strings and count distinct values

public static void main(String[] args)

int N = Integer.parselnt(args[0]);
StringStream stream = new StringStream(N);
long start = System.currentTimeMi111s();

StdOut.printin(count(stream));
long now = System.currentTimeMi111s();

double time = (now - start) / 1000.0;
StdOut.printlin(time + " seconds");

Q. Is hashing with linear probing effective?

A. Yes! Validated in countless applications for over half a century.

% java Hash 2000000 < 1og.07.f3.txt
483477

3.322)seconds

% java Hash 4000000 < l1og.07.f3.txt
883071

seconds

% java Hash 6000000 < log.07.f3.txt

1097944
seconds

4

% sort -u log.07.f3 | wc -1

1097944

1

sort-based method
takes about 3 minutes

25

Summary of cardinality count algorithms

time bound memory bound il
/'-}' e AL Useahashtable'} 1
Wrong answer N2 N 1
Sort and count Nlog N N & \g !?
/z‘?—@ SJ//»

i e e] -
Existence table N U \t‘/j%,_

Hash table N K N V

sk Theoretical AofA. Hashing solution is quadratic in the worst case.

Theoretical AofA. If (uniform hashing assumption) then hashing solution is linear (expected).

Scientific AofA. Hypothesis that hashing solution is linear has been validated for decades.

Q. End of story?

A. No. Beginning of story!

A problem: Exact cardinality count requires linear space

Q. | can’t use a hash table. The stream is much too big to fit all values in memory. Now what?
A. Bad news: You cannot get an exact count.

A. (Bloom, 1970) You can get an accurate estimate using a few bits per distinct value.

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.1sanca.dsl-w.verizon.net
1.23.193.58

188.134.45.71

1.23.193.58

gsearch.CS.Princeton.EDU
pool-71-104-94-246.1sanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.1nse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com

A. Much better news: You can get an accurate estimate using only a handful of bits (stay tuned).

27

Cardinality estimation

is a fundamental problem with many applications where memory is limited.

Q. About how many different values appear in a given stream?

Constraints
e Make one pass through the stream.
e Use as few operations per value as possible
e Use as little memory as possible.
e Produce as accurate an estimate as possible.

typical
applications How many unique Which sites are the
visitors to my website? most/least popular?

How many different websites

visited by each customer? How many different values

for a database join?

To fix ideas on scope: Think of billions of streams each having trillions of values.

29

Probabilistic counting with stochastic averaging (PCSA)

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.

i

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)

Probabilistic Counting Algorithms
for Data Base Applications

Phil/ /}ﬁ/ﬁe F/ C@jo/ el

=

INRIA, Rocquencourt, 78153 Le C. hesnay, France
K

PHILIPPE FLAJOLET

:

/
/ G. NIGEL MARTIN

P h i l i p pe F l a j [0 ' e t ’ 94 8 —_— 2 0 ’ ’ IBM Development Laboratory, Hursley Park,

Winchester, Hampshire SO212JN, United Kingdom

AND
>

Received June 13, 1984; revised April 3, 1985

This paper introduces a class of probabilistic counting algorithms with which one can
estimate the number of distinct elements in a large collection of data (typically a large file
stored on disk) in a single pass using only a small additional storage (typically less than a
hundred binary words) and only a few operations per element scanned. The algorithms are

u - based on statistical observations made on bits of hashed values of records. They are by con-
C O n t r I b u t I O n S struction totally insensitive to the replicat‘ive structure of clcm_cn!s in the file; they can be used
in the context of distributed systems without any degradation of performances and prove
especially useful in the context of data bases query optimisation. 171985 Academic Press. Inc
e Introduced problem
As data base systems allow the user to specify more and more complex queries,
l ~ the need arises for efficient processing methods. A complex query can however
o I d e a Of S tream Ing a gorlt m generally be evaluated in a number of different manners, and the overall perfor-

mance of a data base system depends rather crucially on the selection of
appropriate decomposition strategies in each particular case.

® I d e a Of i S m a I I) Ske tch Of i b i g) d ata Even a problem as trivial as computing the intersection of two collections of data

A and B lends itself to a number of different treatments (see, e.g.,, [7]):

[. INTRODUCTION

OB 1 Sort A, search each element of B in 4 and retain it if it appears in A4;

e Detailed analysis that yields tight bounds on accuracy

® F u I I Val i d at i O n Of m at h e m at i Cal re S u ItS W i t h e X p e ri m e n tat i O n ::1 tlfg:j:tszmcwl'a::;on strategy will have a cost essentially determined by the

number of records @, b in A and B, and the number of distinct elements «, f in 4
and B, and for typical sorting methods, the costs are:

e Practical algorithm that has remained effective for decades

(022-0000/85 $3.00

Bottom line. Quintessential example of the effectiveness of scientific approach to algorithm design.

PCSA first step: Use hashing

Transform value to a “random” computer word.
e Compute a hash function that transforms
data value into a 32- or 64-bit value. «—
e Cardinality count is unaffected (with high probability).
e Built-in capability in modern systems.
o Allows use of fast machine-code operations.

20th century: use 32 bits (millions of values)
21st century: use 64 bits (quadrillions of values)

Example: Java

e All data types implement a hashCode() method String value = “gsearch.CS.Princeton.EDU”
(though we often override the default). int x = value.hashCode();
e String data type stores value (computed once). \
current Java default

Is 32-bit 1nt value
Bottom line: Do cardinality estimation on streams of (binary) integers.

01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011

00001001011011100000010010010111
NNNNTNNTNTTINTTTNNNNNNTANTANTNATT1

“Random” except for the fact
that some values are equal.

31

Initial hypothesis

Hypothesis. Uniform hashing assumption is reasonable in this context.

Implication. Need to run experiments to validate any hypotheses about performance.

No problem!
e AOfA is a scientific endeavor (we always validate hypotheses).
e End goal is development of algorithms that are useful in practice.
e It is the responsibility of the designer to validate utility before claiming it.

e After decades of experience, discovering a performance problem due to
a bad hash function would be a significant research result.

Unspoken bedrock principle of AofA.
Experimenting to validate hypotheses is WHAT WE DO!

32

Probabilistic counting starting point: two integer functions

Definition. ¥(X) is the number of trailing 1s in the binary representation of X. «— position of rightmost 0

Definition. R(x) = 2rx) 15 14 13 12 11 10 9 8 7 6@4 32 1 0 KHX) R(X) R (x):
1 011 11011111010 1 1 2 10
1 01 01 01 01O0O0O01T110o0 0 1 1
0110100101011111 (5 32 100000
- ~
e whacki basics: 011 0100101011111 X
Bit-whacking basics: 1001011010100000 X S
R(X) is easy to compute. 0110100101100000 x + 1 >onatypical
O 0O 0O OOO0OO0OOO0O0O1O0O0O0O00O0 X&x+1 computer

Bit-whacking magic:

r(x) is also “easy” to compute (don’t ask). <

see Knuth volume 4A., page 141

available as a single instruction on modern processors

Bottom line: ¥(x) and R(x) can be computed with just a few machine instructions.

33

Probabilistic counting (Flajolet and Martin, 1983)

E % |
Maintain a single-word sketch that summarizes a data stream xo, xi1, ..., Xn, ... * } } v L }
e For each xn in the stream, update sketch by bitwise or with R(xn). ».) ' Q“ \\
e Use position of rightmost 0 in sketch to estimate Ig N. |

estimate of Ig N

!

3]30292827262524232229]8]7]6]5]4]3]2”]098765432 1 O
sketth 00000001011011111111111111111111
typical sketch XN 001101010111111010101010100011171
N = 106 R(x) = 2k
R(XN) ooooooooooooooooooooooooooo1oooo<—withp;7bgbi/ity
1/2
sketch|R(xN)OOOOOOOlO11@11111111111111111111

leading bits almost surely O trailing bits almost surely 1

Rough estimate of IgN is r(sketch).

Rough estimate of N is R(sketch). <«— correction factor needed (stay tuned)

34

Probabilistic counting trace

X
01100010011000111010011110111011
01100111001000110001111100000101
00010001000111000110110110110011
01000100011101110000000111011111
01101000001011000101110001000100
00110111101100000000101001010101
00110100011000111010101111111100
00011000010000100001011100110111
00011001100110011110010000111111
01000101110001001010110011111100

r(x)
2
1

2

5
0
1
0
3
$
0

R(x)
100
10
100
100000
1
10
1
1000
1000000
1

sketch
00000000000000000000000000000100
00000000000000000000000000000110
00000000000000000000000000000110
00000000000000000000000000100110
00000000000000000000000000100111
00000000000000000000000000100111
00000000000000000000000000100111
00000000000000000000000000101111

00000000000000000000000001101111
00000000000000000000000001101111

R(sketch) = 10000
=16

35

Probabilistic counting (Flajolet and Martin, 1983)

public long R(long x)
{ return ~x & (x+1); }

public long estimate(Iterable<String> stream)

{
long sketch;

for (s : stream)
sketch = sketch | R(s.hashCode());

return R(sketch) /.77351;

Early example of “a simple algorithm whose analysis isn’t”

Q. (Martin) Estimate seems a bit low. How much?

A. (unsatisfying) Obtain correction factor empirically.

Maintain a sketch of the data
e A single word
e OR of all values of R(x) in the stream
e Return smallest value not seen

with correction for bias

%Mﬂw%%
Maky

A. (Flajolet) Do the math. Without it, there is no algorithm!

Mathematical analysis of probabilistic counting

Theorem. The expected number of trailing 1s in the PC sketch is

lg(¢N) + P(lgN) +0o(1) where ¢p = 77351 trailing 1s

in sketch
and P is an oscillating function of lg N of very small amplitude.

Proof (omitted).

1980s: Flajolet tour de force

1990s: trie parameter
2 1st century: standard analytic combinatorics - /
n = highest null
| | _ left of
Kirschenhofer, Prodinger, and Szpankowski right spine

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.

Jacquet and Szpankowski
Analytical depoissonization and its applications, TCS 1998.

In other words. In PC code, R(sketch)/.77351 is an unbiased statistical estimator of N.

37

Validation of probabilistic counting

Hypothesis. Expected value returned is N for random values from a large range.

Experiment. 100,000 31-bit random values (20 trials)
338900 ° o

169450 O 0 o o o o
100000
84725 O e o

42362 O O O °
21181 ® ®

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Flajolet and Martin: Result is “typically one binary order of magnitude off.”

Of course! (Always returns a power of 2 divided by .77351.)

Need to incorporate more experiments for more accuracy.

18 19 20 «— trials

16384/.77351 = 21181
32768/.77351 = 42362
65536/.77351 = 84725
131072/.77351 = 169450

38

* Refinements

Stochastic averaging

Goal. Perform M independent PC experiments and average results.

Alternative 1: M independent hash functions? No, too expensive (and wasteful).

02 02 02
01 02 03 04 01 02 03 04 01 02 03 04 =—

? 03 03 03
Alternative 3: Stochastic averaging 04 04 04

e Use second hash to divide stream into 27 independent streams
e Use PC on each stream, yielding 2m sketches .

e Compute mean = average number of trailing bits in the sketches. key point: equal values
e Return 2mean/ 77531. all go to the same stream

_/—09 07 07

11 10 11
11 09 07 23 31 07 22 22 10 11 39 21 =—

?23 22 22 21
31 39

Alternative 2: M-way alternation? No, bad results for certain inputs.

-

40

PCSA trace

use initial m bits M =4
for second hash
l X R(x) sketch[0] sketch[1] sketch[2] sketch[3]
1010011110111011 100 0000000000000100
0001111100000101 10 0000000000000010
0110110110110011 100 0000000000000100
0000000111011111 100000 0000000000100010
0101110001000100 1 0000000000000101
0000101001010101 10 0000000000100010
1010101111111100 1 0000000000000101
0001011100110111 1000 0000000000101010
1110010000111111 1000000 0000000001000000
1010110011111101 10 0000000000000111

0001110100110100 1 0000000000101011

0000000000101011 ({0000000000000101 {0000000000000111 {0000000001000000

r (sketch[|) 2] 3 0

Probabilistic counting with stochastic averaging in Java

public static long estimate(Iterable<Long> stream, int M)

{
long[] sketch = new long[M];

for (long x : stream)

{
int k = hash2(x, M);

sketch[k] = sketch[k]
}

1nt sum = 0;
for (int k = 0; k < M; k++)
sum += r(sketchl[k]);
double mean = 1.0 * sum / M;
return (1nt) (M * Math.pow(2, mean)/.77351);

| R(X);

Flajolet-Martin 1983

Observation. Accuracy improves as M increases.

ldea. Stochastic averaging

e Use hash to convert stream
to integers and compute R
values as before

e Use second hash to split into
M = 2m independent streams

e Use PC on each stream, yielding
2m sketches .

e Compute mean = average #
trailing 1 bits in the sketches.

e Return 2mean/ 77351.

Theorem (paraphrased to fit context of this talk).

Under the uniform hashing assumption, PCSA

Q. By how much?

o Uses 64M bits.

e Produces estimate with a relative accuracy
close to 0.78/vM

Validation of PCSA analysis

Hypothesis. Value returned is accurate to 0.78/vM for random values from a large range.

Experiment. 100,000 31-bit random values (10 trials)

% java PCSA 1000000 31 1024 10 —

964416 o ¢

997616 e
959857 100000 —

1024303 —

972940 -

985534 - ©
998291 96000 iy ° °
996266 95000 |—
959208
1015329

1 2 3 4 5 6 7 8 9 10 <« trials

Space-accuracy tradeoff for probabilistic counting with stochastic averaging

1

S
I

64

Relative accuracy:

0.78
VM

10% [~

M = 1024

5% [~

3264 128 256 512 1024

Bottom line.
e Attain 10% relative accuracy with a sketch consisting of 64 words.
e Attain 2.4% relative accuracy with a sketch consisting of 1024 words.

Scientific validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.
Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (1)

Validation (RS, this morning).
log.07.f3.txt

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163

% java PCSA 6000000 1024 < 1og.07.f3.txt poo1-71-104-94-246.1sanca.ds1-w.verizon.net

1106474 1.23.193.58
188.134.45.71
T 1.23.193.58
gsearch.CS.Princeton.EDU

<1% larger than actual value poo1-71-104-94-246.1sanca.ds1-w.verizon.net

81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.1nse3.cht.bigpond.net.au

e — -— - - — o= - o=

Q. Is PCSA effective?

A. ABSOLUTELY!

45

Summary: PCSA (Flajolet-Martin, 1983)

is a demonstrably effective approach to cardinality estimation

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)

Q. About how many different values are present in a given stream? Probabiistc Counting Algorihms

for Data Base Applications
PHILIPPE FLAJOLET
INR)A, Rocquencourt, 78153 Le Chesnay, France

AND

G. NIGEL MARTIN

IBM Development Laboratory, Hursley Park,
Winchester, Hampshire SO212JN, United Kingdom
Received June 13, 1984; revised April 3, 1985
This paper introduces a class of probabilistic counting algorithms with which one can
estimate the number of distinct elements in a large collection of data (typically a large file
. a e S 0 n e paSS rO l I g e S re a m . stored on disk) in a single pass using only a small additional storage (typically less than a

hundred binary words) and only a few operations per element scanned. The algorithms are
based on statistical observations made on bits of hashed values of records. They are by con-

- - - struction totally insensitive to the replicative structure of elements in the file; they can be used
e Uses a fe w machine instructions per va lue el sk 1 he conet o . s Qvry opmsaion, 3 s P

especially useful in the context of data bases query optimisation, 171985 Academic Press, Inc

e Uses M words to achieve relative accuracy 0.78/vM J

As data base systems allow the user to specify more and more complex queries,
the need arises for efficient processing methods. A complex query can however
generally be evaluated in a number of different manners, and the overall perfor-
mance of a data base system depends rather crucially on the selection of
appropriate decomposition strategies in each particular case.

Even a problem as trivial as computing the intersection of two collections of data
A and B lends itself to a number of different treatments (see, e.g., [7]):

ReSUItS Valldated th rough EXtenS|Ve eXpe”mentathn. ‘08" 1. Sort 4, search each element of B in A and retain it if it appears in 4;

2. sort A4, sort B, then perform a merge-like operation to determine the inter-

section;

3. eliminate duplicates in A and/or B using hashing or hash filters, then per-
form Algorithm 1 or 2.

Each of these evaluation strategy will have a cost essentially determined by the
number of records a, b in A and B, and the number of distinct elements o, f/ in A
and B, and for typical sorting methods, the costs are:

182
0022-0000/85 $3.00

Open questions

e Better space-accuracy tradeoffs?

e Support other operations? “IT IS QUITE CLEAR that other observable regularities on hashed
| values of records could have been used...

— Flajolet and Martin

Small sample of work on related problems

1970

1984

1996-

2000

2004

2005

2012

2014

Bloom
Wegman

many authors

Indyk

Cormode-
Muthukrishnan

Giroire

Lumbroso

Helmi—-Lumbroso-
Martinez-Viola

set membership
unbiased sampling estimate
refinements (stay tuned)

LT horm

frequency estimation
deletion and other operations

fast stream processing
full range, asymptotically unbiased

uses neither sampling nor hashing

47

logs and loglogs

To improve space-time tradeoffs, we need to carefully count bits.

Relevant quantities
e Nis the number of items in the data stream.
e |g Nis the number of bits needed to represent numbers less than N in binary.
e |g Ilg Nis the number of bits needed to represent numbers less than Ig N in binary.

For most applications

e Nis less than 264,

e |g Nis less than 64.
e lg lg Nis less than 7.

Typical PCSA implementations
e Could use MIg N bits, in theory.
e Use 64-bit words to take advantage of machine-language efficiencies.
e Use (therefore) 6464 = 4096 bits with M =64 (for 10% accuracy with N < 264),

49

We can do better (in theory)

Alon, Matias, and Szegedy
The Space Complexity of Approximating the Frequency Moments
STOC 1996; JCSS 1999.

Contributions
e Studied problem of estimating higher moments
e Formalized idea of randomized streaming algorithms
e Won Gddel Prize in 2005 for “foundational contribution”

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, PC, for any c >2, Replaces “uniform hashing” assumption
e Uses O(log N) bits. with “random bit existence” assumption

e IS accurate to a factor of ¢, with probability at least 2/c.

BUT, no impact on cardinality estimation in practice
e “Algorithm” just changes hash function for PC
e Accuracy estimate is too weak to be useful
e No validation

50

Interesting quote

“Flajolet and Martin [assume] that one may use in the algorithm
an explicit family of hash functions which exhibits some ideal
random properties. Since we are not aware of the existence of
such a family of hash functions ...”

Theoretical
Computer
Science

— Alon, Matias, and Szegedy

No! That was a thought experiment that they addressed with stochastic averaging.

They also hypothesized that practical hash functions would be as effective as random ones.
They then validated that hypothesis by proving tight bounds that match experimental results.

Points of view re hashing
e Theoretical computer science. Uniform hashing assumption is not proved.
e Practical computing. Hashing works for many common data types.
e AofA. Extensive experiments have validated precise analytic models.

Points of view re random bits
e Theoretical computer science. Random bits exist.
e Practical computing. No, they don’t! And randomized algorithms are inconvenient, btw.
e AofA. More effective path forward is to validate precise analysis even if stronger assumptions are needed.

51

We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan
Counting Distinct Elements in a Data Stream
RANDOM 2002.

Contributions
Introduced the idea of using real numbers instead of bit patterns
Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, there exists an algorithm that
e Uses O(M log log N) bits. «—— PCSA uses M Ig N bits

e Achieves relative accuracy O(1/vVM).

STILL no impact on cardinality estimation in practice
e Infeasible because of high stream-processing expense.
e Big constants hidden in O-notation
e No validation

52

We can do better (in theory and in practice)

Durand and Flajolet
Loglog Counting of Large Cardinalities
ESA 2003; LNCS volume 2832.

Theoretical
Computer
Science

Contributions (independent of BYJKST)
e Presents LoglLog algorithm, an easy variant of PCSA
e Improves space-accuracy tradeoff without extra expense per value
e Full analysis, fully validated with experimentation

ldea. Keep track of min(r(x)) for each stream.
e |g N bits can save a value (PCSA)
e Ig lg N bits can save a bit index in a value

Theorem (paraphrased to fit context of this talk).

Under the uniform hashing assumption, LogLog
e Uses M Ig Ig N bits.
o Achieves relative accuracy close to 1.30/vVM .

Practical impact. Deployed for network switches in a telecommunications system. s

We can do better (in theory and in practice)

Flajolet, Fusy, Gandouet, and Meunier

HyperLoglLog: the analysis of a near-optimal cardinality
estimation algorithm, AofA 2007; DMTCS 2007 .

ldea. Use harmonic mean to dampen effect of outliers.

lllustrative example. 31 values equal to 20000
1 outlier varying between 5000 and 80000

Arithmetic mean
X1+ Xo+Xs+ ...+ Xy

arithmetic mean

l

Theoretical
Computer
Science

harmonic

/ mean

M 21000 -
Harmonic mean
20000 -
M
1 | 1 | 1 | | 1
X1 X Xz Xy 19000 -

| | |
20000 40000 60000

value of outlier

|
80000

Practical impact. Full analysis and validation allows immediate deployment in applications.

54

We can do better: HyperLoglog algorithm (2007)

public static long estimate(Iterable<Long> stream, 1nt M)

{ int[] bytes = new 1nt[M]; ldeas.
1;or (Tong x : stream) e Use stochastic averaging.
int k = hash2(x, M); o Keep track of min(r(x))
if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x); for each stream.
) e Use harmonic mean.

double sum = 0.0;
for (Aint k = 0; k < M; k++)
sum += Math.pow(2, -1.0 - bytes[k]);
return (1nt) (alpha * M * M / sum);
}

Flajolet-Fusy-Gandouet-Meunier 2007

Theorem (paraphrased to fit context of this talk).

Under the uniform hashing assumption, HyperLoglLog
e Uses M log log N bits.
e Achieves relative accuracy close to 1.02/vVM .

Ig Ig N bits

55

Space-accuracy tradeoff for HyperlLoglog

Relative accuracy: ——

10% [

5% [

64 128 256 512

Bottom line (for N < 264).

e Attain 12.5% relative accuracy with a sketch consisting of 64x6 =396 bits
e Attain 3.1% relative accuracy with a sketch consisting of 1024x6 = 6144 bits.

PCSA vs Hyperloglog

Typical PCSA implementations
e Could use MIg N bits, in theory.
e Use 64-bit words to take advantage of machine-language efficiencies.
e Use (therefore) 6464 = 4096 bits with M =64 (for 10% accuracy with N < 264).

Typical Hyperloglog implementations
e Could use Mg lg N bits, in theory.
e Use 8-bit bytes to take advantage of machine-language efficiencies.
e Use (therefore) 64*8 = 512 bits with M= 64 (for 10% accuracy with N < 264).

57

Right answer: Hyperloglog

Divide into M streams (stochastic averaging) . Hyperloglog! W
e Keep track of min(# trailing 15s).
e Use harmonic mean.

for (long x : stream)

{
int k = hash2(x, M);

if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x);

public static long estimate(Iterable<lLong> stream, int M) \\ d%_===
{ __I+
byte[] bytes = new byte[M]; — |

}
double sum = 0.0;
for (int k = 0; k < M; k++)

sum += Math.pow(2, -1.0 - bytes[k]);
return (int) (alpha * M * M / sum);
}

58

Validation of Hyperloglog

ocs suppor | contact us
lO ker PRODUCT CUSTOMERS DATA APPS PARTNERS LEARN ﬁ

cradiepoint

Practical Data Science - Amazon Announces

HyperLoglog N e U S [a f
% Periscope
".v:v;v;v'v: DATA

A A &

AMAZON
REDSHIFT

. BigQuery
c Research at Google ‘ redls

S. Heule, M. Nunkesser and A. Hall
HyperlLoglog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm.
Extending Database Technology/International Conference on Database Theory 201 3.

59

Philippe Flajolet, mathematician, data scientist, and computer scientist extraordinaire

r' 11

\

Phi/ /p/ae F/ q/o/e'é‘

2

/ :

Philippe Flajolet 1948-2011

For more information about Philippe Flajolet's pioneering contribution to data streaming algorithms, see
J. Lumbroso, How Flajolet Processed Streams with Coin Flips, https://arxiv.org/abs/1805.00612.

https://arxiv.org/abs/1805.00612

We can do a bit better (in theory) but not much better

Indyk and Woodruff
Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.

Upper bound

Theorem (paraphrased to fit context of this talk).
Any algorithm that achieves relative accuracy O(1/vVM) must use Q(M) bits

/

Lower bound

loglogN improvement possible

Kane, Nelson, and Woodruff
Optimal Algorithm for the Distinct Elements Problem, PODS 2010.

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing there exists an algorithm that

e Uses O(M) bits. <7 optimal
(1/VM).

e Achieves relative accuracy O

Theoretical
Computer
Science

Unlikely to have impact on cardinality estimation in practice
e Tough to beat HyperLoglLog’s low stream-processing expense.
e Constants hidden in O-notation not likely to be < 6

e No validation
62

Can we beat HyperLoglog in practice?
Practical
§ computing

N __

Necessary characteristics of a better algorithm
e Makes one pass through the stream.
e Uses a few dozen machine instructions per value

e Uses a few hundred bits
e Achieves 10% relative accuracy or better

“I've long thought that there should be a simple algorithm that uses a small constant times M bits...”
— Jérémie Lumbroso

bits for
memory bound 10% accuracy

machine instructions memory
64
per stream element bound when N < 2 o N o 264
M loglog N oM /68
| love HyperLoglLo
a few o Yp glog)

HyperLoglLog 20-30
hundred

a few dozen

BetterAlgorithm

Also, results need to be validated through extensive experimentation.

63

A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M)

{

int IgN = 5;

long sketch = 0
long sketch2 =
for (String x : stream)

. |dea.

e 1gN is estimate of lg N

e sketch is 64 indicators

{ .
whether to increment 1gN

long x = hash(s); Y
int k = hash2(x, 64): e sketch2 is is 64 indicators
if (r(x) > 1gN) sketch = sketch (1L << K): whether to increment 1gN
if (r(x) > 1gN + 1) sketch2 = sketch? (1L << k); by 2
1T (p(sketch) > 31) e Update when half the bits
{ sketch = sketch?2; 1gN++; sketch2 = 0; } .

) in sketch are 1

return (1nt) (Math.pow(2, 1IgN + 5.4 + p(sketch)/32.0));

|

bias (determined empirically)

64

Initial experiments

Exact values for web log example HyperBitBit estimates

% java Hash 1000000 < l1og.07.f3.txt % java HyperBitBit 1000000 < log.07.f3.txt
242601 234219

% java Hash 2000000 < 1og.07.f3.txt % java HyperBitBit 2000000 < log.07.f3.txt
483477 499889

% java Hash 4000000 < log.07.f3.txt % java HyperBitBit 4000000 < log.07.f3.txt
883071 916801

% java Hash 6000000 < l1og.07.f3.txt % java HyperBitBit 6000000 < log.07.f3.txt
1097944 1044043

1,000,000 2,000,000 4,000,000 6,000,000

Exact 242,601 483,477 883,071 1,097,944 i 3
o cfica‘ J Theoretical
HyperBitBit 234,219 499,889 916,801 1,044,043 P X oputing Computer
ratio 1.05 1.03 0.96 1.03 vV >
Next steps.
Conjecture. On practical data, HyperBItBit, for N < 264, e Analyze.
e Uses 128 + 6 bits. e Fxperiment.

e Estimates cardinality within 10% of the actual. e [terate.

Summary for cardinality estimation algorithms

Wrong answer
Sort and count
Existence table
Hash table
PCSA
HyperLoglog

HyperBitBit ?

time
bound

N 2

Nlog N

memory bound (bits)
Nlg N
Nlg N
U
Nlg N
Mlg N
Mlglg N

2M+1glg N

bits for
10% accuracy
for 1 billion inputs

64 billion

64 billion

1 billion

64 billion

4096

512

134

66

Why study analysis of algorithms and analytic combinatorics?

HyperLoglLog is a case Iin point.
e Impact is broad and far-reaching.
e Old roots, new opportunities.
e Allows solution of otherwise unsolvable problems.

e Intellectually stimulating.

T QRN

e Implementations teach programming proficiency.

e May unlock the secrets of life and of the universe. who knows?

<

e Useful for fun and profit.

HyperLoglLog

68

Analysis of Algorithms

Original MOOC title: ANALYTIC COMBINATORICS, PART ONE

i Analytic Combinatorics

Philippe Flajolet and
Robert Sedgewick

Original MOOC title: ANALYTIC COMBINATORICS, PART TWO

http://aofa.cs.princeton.edu

http://ac.cs.princeton.edu

