

" An equation means nothing to me unless it expresses a thought of God."

– Srinivasa Ramanujan

$$Q(N) \equiv \sum_{1 \le k \le N} \frac{N!}{(N-k)!N^k} = \sqrt{\frac{\pi N}{2}} + O(1)$$

Q. Give an asymptotic approximation of
$$e^{H_{2N}-H_N}$$
 to within $O(\frac{1}{N^2})$

AofA Asymptotics TEQ 1 (improved version)

4

Q. Match each of the topics described in the book with a mathematician's name.

No, this is not high school, but... You do not want to appear to be ignorant!

Q. Match each expression with an approximation to its value.			1.10102
			1.10462
	1.0110		1.22019
	1.0510		1.50034
	1 0120		1.62889
			1.64463
	1.0150		2.02300
	1.01100		2.70481
			2.71828

$$(1+x)^{t} = \sum_{0 \le k \le t} {\binom{t}{k} x^{k}}$$

$$= 1 + tx + \frac{t(t-1)}{2}x^{2} + O(x^{3})$$

$$(1+\frac{1}{N})^{t} = 1 + \frac{t}{N} + \frac{t(t-1)}{2N^{2}} + O\left(\frac{1}{N^{3}}\right) \quad (1+\frac{1}{N})^{\alpha N} = 1 + \frac{\alpha N}{N} + \frac{\alpha^{2} N^{2}}{2N^{2}} + \dots \checkmark$$

$$(1+\frac{1}{N})^{\alpha N} = \exp\left(\alpha N \ln(1+1/N)\right)$$

$$1.01^{10} = 1 + \frac{10}{100} + \frac{90}{20000} + \dots \qquad (1+\frac{1}{N})^{\alpha N} = \exp\left(\alpha N \ln(1+1/N)\right)$$

$$= \exp\left(\alpha N(1/N + O(1/N^{2}))\right)$$

$$\approx 1.1045 \qquad \qquad = e^{\alpha} + O\left(\frac{1}{N}\right)$$

 $1.01^{50} \approx \sqrt{e}$

