6. Trees
Review

First half of class
- Introduced analysis of algorithms.
- Surveyed basic mathematics needed for scientific studies.
- Introduced analytic combinatorics.

<table>
<thead>
<tr>
<th></th>
<th>Analysis of Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Recurrences</td>
</tr>
<tr>
<td>3</td>
<td>Generating Functions</td>
</tr>
<tr>
<td>4</td>
<td>Asymptotics</td>
</tr>
<tr>
<td>5</td>
<td>Analytic Combinatorics</td>
</tr>
</tbody>
</table>

Note: Many applications beyond analysis of algorithms.
Orientation

Second half of class

• Surveys fundamental combinatorial classes.
• Considers techniques from analytic combinatorics to study them.
• Includes applications to the analysis of algorithms.

<table>
<thead>
<tr>
<th>chapter</th>
<th>combinatorial classes</th>
<th>type of class</th>
<th>type of GF</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Trees</td>
<td>unlabeled</td>
<td>OGFs</td>
</tr>
<tr>
<td>7</td>
<td>Permutations</td>
<td>labeled</td>
<td>EGFs</td>
</tr>
<tr>
<td>8</td>
<td>Strings and Tries</td>
<td>unlabeled</td>
<td>OGFs</td>
</tr>
<tr>
<td>9</td>
<td>Words and Mappings</td>
<td>labeled</td>
<td>EGFs</td>
</tr>
</tbody>
</table>

Note: Many more examples in book than in lectures.
6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees
Definition. A binary tree is an external node or an internal node and two binary trees.
Binary tree enumeration (quick review)

How many binary trees with N nodes?

$T_1 = 1$

$T_2 = 2$

$T_3 = 5$

$T_4 = 14$
Symbolic method: binary trees

How many binary trees with N nodes?

<table>
<thead>
<tr>
<th>Class</th>
<th>T, the class of all binary trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>$</td>
</tr>
<tr>
<td>OGF</td>
<td>$T(z) = \sum_{t \in T} z^{</td>
</tr>
</tbody>
</table>

Atoms

<table>
<thead>
<tr>
<th>type</th>
<th>class</th>
<th>size</th>
<th>GF</th>
</tr>
</thead>
<tbody>
<tr>
<td>external node</td>
<td>Z_\square</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>internal node</td>
<td>Z_\bullet</td>
<td>1</td>
<td>z</td>
</tr>
</tbody>
</table>

Construction

$T = Z_\square + T \times Z_\bullet \times T$

OGF equation

$T(z) = 1 + zT(z)^2$

$[z^N] T(z) = \frac{1}{N+1} \binom{2N}{N} \sim \frac{4^N}{\sqrt{\pi N^3}}$
Each forest with N nodes corresponds to

A tree with $N+1$ nodes

$$[z^N]F(z) = [z^{N+1}]G(z)$$
$$zF(z) = G(z)$$

GF that enumerates forests
GF that enumerates trees

add a root
Anatomy of a (general) tree

Definition. A *forest* is a sequence of disjoint trees.

Definition. A *tree* is a node (called the *root*) connected to the roots of trees in a forest.
Forest enumeration

How many forests with N nodes?

$F_1 = 1$

$F_2 = 2$

$F_3 = 5$

$F_4 = 14$
Tree enumeration

How many trees with N nodes?

$G_1 = 1$

$G_2 = 1$

$G_3 = 2$

$G_3 = 5$

$G_4 = 14$
Symbolic method: forests and trees

How many forests and trees with N nodes?

<table>
<thead>
<tr>
<th>Class</th>
<th>F, the class of all forests</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>$</td>
<td>f</td>
</tr>
</tbody>
</table>

| Class | G, the class of all trees | |
| Size | $|g|$, the number of nodes in g | |

Atoms
<table>
<thead>
<tr>
<th>type</th>
<th>class</th>
<th>size</th>
<th>GF</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>Z</td>
<td>1</td>
<td>z</td>
</tr>
</tbody>
</table>

Construction

$$F = SEQ(G) \quad \text{and} \quad G = Z \times F$$

OGF equations

$$F(z) = \frac{1}{1 - G(z)} \quad \text{and} \quad G(z) = zF(z)$$

Solution

$$F(z) - zF(z)^2 = 1$$

Extract coefficients

$$F_N = T_N = \frac{1}{N + 1} \binom{2N}{N} \sim \frac{4^N}{\sqrt{\pi N^3}}$$

$$G_N = F_{N-1} \sim \frac{4^{N-1}}{\sqrt{\pi N^3}}$$
Each forest with N nodes corresponds to

- left child
- right sibling

"rotation" correspondence

A binary tree with N nodes
Aside: Drawing a binary tree

Approach 1:
- y-coordinate: height minus node depth
- x-coordinate: inorder node rank

Design decision:
Reduce visual clutter by omitting external nodes

Problem: distracting long edges
Aside: Drawing a binary tree

Approach 2:
- y-coordinate: height minus node depth
- x-coordinate: centered and evenly spaced by level

Drawing shows tree profile
Typical random binary tree shapes (400 nodes)

Challenge: characterize analytically
6. Trees

- Trees and forests
- **Binary search trees**
- Path length
- Other types of trees
Binary search tree (BST)

Fundamental data structure in computer science:
- Each node has a key, with comparable values.
- Keys are all distinct.
- Each node’s left subtree has smaller keys.
- Each node’s right subtree has larger keys.

Section 3.2
BST representation in Java

Java definition: A **BST** is a reference to a root **Node**.

A **Node** is comprised of four fields:
- A **Key** and a **Value**.
- A reference to the left and right subtree.

Notes:
- Key and Value are generic types.
- Key is Comparable.

```java
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```
public class BST<Key extends Comparable<Key>, Value> {
 private Node root;

 private class Node {
 // /* see previous slide */
 }

 public Value get(Key key) {
 Node x = root;
 while (x != null) {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

 public void put(Key key, Value val) {
 /* see next slide */
 }
}
BST implementation (insert)

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    return x;
}
```

considered, but tricky, recursive code
Key fact

The shape of a BST depends on the order of insertion of the keys.

Best case

- Search cost guaranteed $\sim \lg N$

Typical case

- Average search cost?

Worst case

- Average search cost $\sim N/2$ (a problem)

Reasonable model: Analyze BST built from inserting keys in *random* order.
Typical random BSTs (80 nodes)

Challenge: characterize analytically (explain difference from random binary trees)
BST shape

is a property of permutations, not trees (!)

Note: Balanced shapes are more likely.
Mapping permutations to trees via BST insertion

Q. How many permutations map to this tree?

A. 2

Q. How many permutations map to this tree?

A. \(\binom{5}{2} \cdot 2 \cdot 1 = 20 \)

"result in this tree shape when inserted into an initially empty BST"

ways to mix left and right

perms mapping to left subtree

perms mapping to right subtree

1, 2, and 3 on the left

5 and 6 on the right

4 2 1 3 5 6
4 2 1 5 3 6
4 2 1 5 6 3
4 2 5 1 3 6
4 2 5 1 6 3
4 2 5 6 1 3
4 2 5 6 3 1
4 5 2 1 3 6
4 5 2 1 6 3
4 5 2 6 1 3
4 5 6 2 1 3
4 5 6 2 3 1
Mapping permutations to trees via BST insertion

Q. How many permutations map to a general binary tree t?

A. Let P_t be the number of perms that map to t

$$P_t = \left(\frac{|t_L| + |t_R|}{|t_L|} \right) \cdot P_{t_L} \cdot P_{t_R}$$

much, much larger when $t_L \approx t_R$ than when $t_L \ll t_R$
(explains why balanced shapes are more likely)
Two binary tree models
that are fundamental (and fundamentally different)

BST model
- Balanced shapes much more likely.
- Probability root is of rank k: $1/N$.

Catalan model
- Each tree shape equally likely.
- Probability root is of rank k:
 \[
 \frac{1}{k} \binom{2k - 2}{k} \cdot \frac{1}{N - k + 1} \binom{2N - 2k}{N - k} \cdot \frac{1}{N + 1} \binom{2N}{N}
 \]
Catalan distribution

Probability that the root is of rank k in a randomly-chosen binary tree with N nodes.

\[
\frac{1}{k} \binom{2k-2}{k} \frac{1}{N-k+1} \binom{2N-2k}{N-k} \frac{1}{N+1} \binom{2N}{N}
\]

public static double[][] catalan(int N) {
 double[] T = new double[N];
 double[][] cat = new double[N-1][];
 T[0] = 1;
 for (int i = 1; i < N; i++)
 T[i] = T[i-1]*(4*i-2)/(i+1);

 cat[0] = new double[1];
 cat[0][0] = 1;
 for (int i = 1; i < N-1; i++)
 for (int j = 0; j < i; j++)
 cat[i][j] = T[j]*T[i-j-1]/T[i];
 return cat;
}

Note: Small subtrees are extremely likely.

Ex. Probability that at least one of the two subtrees is empty: $\sim 1/2$
Aside: Generating random binary trees

```java
public class RandomBST {
    private Node root;
    private int h;
    private int w;

    private class Node {
        private Node left, right;
        private int N;
        private int rank, depth;
    }

    public RandomBST(int N) {
        root = generate(N, 0);
    }

    private Node generate(int N, int d) {
        // See code at right.
    }

    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        RandomBST t = new RandomBST(N);
        t.show();
    }
}
```

Note: “rank” field includes external nodes: x.rank = 2*k+1

```java
private Node generate(int N, int d) {
    Node x = new Node();
    x.N = N; x.depth = d;
    if (h < d) h = d;
    if (N == 0) x.rank = w++;
    else {
        int k = // internal rank of root
        x.left = generate(k-1, d+1);
        x.rank = w++;
        x.right = generate(N-k, d+1);
    }
    return x;
}
```

```
random BST: StdRandom.uniform(N)+1
random binary tree: StdRandom.discrete(cat[N]) + 1;
```
Aside: Drawing binary trees

```java
public void show()
{   show(root); }

private double scaleX(Node t)
{   return 1.0*t.rank/(w+1); }
private double scaleY(Node t)
{   return 3.0*(h - t.depth)/(w+1); }

private void show(Node t)
{   if (t.N == 0) return;
    show(t.left);
    show(t.right);
    double x = scaleX(t);
    double y = scaleY(t);
    double xl = scaleX(t.left);
    double yl = scaleY(t.left);
    double xr = scaleX(t.right);
    double yr = scaleY(t.right);
    StdDraw.filledCircle(x, y, .005);
    StdDraw.line(x, y, xl, yl);
    StdDraw.line(x, y, xr, yr);
}
```

Exercise: Implement “centered by level” approach.
6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees
Path length in binary trees

Definition. A *binary tree* is an external node or an internal node and two binary trees.

internal path length: \[ipl(t) = \sum_{k \geq 0} k \cdot \{\# \text{ internal nodes at depth } k\} \]

external path length: \[xpl(t) = \sum_{k \geq 0} k \cdot \{\# \text{ external nodes at depth } k\} \]
Path length in binary trees

<table>
<thead>
<tr>
<th>notation</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>binary tree</td>
</tr>
<tr>
<td>$</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td># external nodes in t</td>
</tr>
<tr>
<td>t_L and t_R</td>
<td>left and right subtrees of t</td>
</tr>
<tr>
<td>$ipl(t)$</td>
<td>internal path length of t</td>
</tr>
<tr>
<td>$xpl(t)$</td>
<td>external path length of t</td>
</tr>
</tbody>
</table>

Recursive relationships

$|t| = |t_L| + |t_R| + 1$

$t = t_L + t_R$

$ipl(t) = ipl(t_L) + ipl(t_R) + |t| - 1$

$xpl(t) = xpl(t_L) + xpl(t_R) + |t|$

Lemma 1. $[t] = |t| + 1$

Proof. Induction.

$t = t_L + t_R$

$= |t_L| + 1 + |t_R| + 1$

$= |t| + 1$

Lemma 2. $xpl(t) = ipl(t) + 2|t|$

Proof. Induction.

$xpl(t) = xpl(t_L) + xpl(t_R) + |t|$

$= ipl(t_L) + 2|t_L| + ipl(t_R) + 2|t_R| + |t| + 1$

$= ipl(t) + 2|t|$
Problem 1: What is the expected path length of a random binary tree?

\[Q_{Nk} = \text{# trees with } N \text{ nodes and ipl } k \]
\[T_N = \text{# trees} \]
\[Q_N = \text{cumulated cost (total ipl)} \]

\[Q_{10} = 1 \quad T_1 = 1 \quad Q_1 = 0 \quad Q_1/T_1 = 0 \]
\[Q_{21} = 2 \quad T_2 = 2 \quad Q_2 = 2 \quad Q_2/T_2 = 1 \]
\[Q_{32} = 1 \quad Q_{33} = 4 \quad T_3 = 2 \quad Q_3 = 1 \cdot 2 + 4 \cdot 3 = 14 \]
\[Q_3/T_3 = 2.8 \]
\[Q_{44} = 4 \quad T_4 = 14 \quad Q_{45} = 2 \quad Q_4 = 4 \cdot 4 + 2 \cdot 5 + 8 \cdot 6 = 74 \]
\[Q_{46} = 8 \quad Q_4/T_4 \approx 5.286 \]
Average path length in a random binary tree

- T is the set of all binary trees.
- $|t|$ is the number of internal nodes in t.
- $\text{ipl}(t)$ is the internal path length of t.
- T_N is the # of binary trees of size N (Catalan).
- Q_N is the total ipl of all binary trees of size N.

Counting GF.

$$T(z) = \sum_{t \in T} z^{|t|} = \sum_{N \geq 0} T_N z^N = \sum_{N \geq 0} \frac{1}{N + 1} \binom{2N}{N} z^N \sim \frac{4^N}{\sqrt{\pi N^3}}$$

Cumulative cost GF.

$$Q(z) = \sum_{t \in T} \text{ipl}(t) z^{|t|}$$

Average ipl of a random N-node binary tree.

$$\frac{[z^N]Q(z)}{[z^N]T(z)} = \frac{[z^N]Q(z)}{T_N}$$

Next: Derive a functional equation for the CGF.
CGF functional equation for path length in binary trees

Counting GF.

\[T(z) = \sum_{t \in T} z^{|t|} \]

CGF.

\[Q(z) = \sum_{t \in T} ipl(t) z^{|t|} \]

Decompose from definition.

\[Q(z) = 1 + \sum_{t_L \in T} \sum_{t_R \in T} (ipl(t_L) + ipl(t_R) + |t_L| + |t_R|) z^{|t_L| + |t_R| + 1} \]

\[\sum_{t_L \in T} ipl(t_L) z^{|t_L|} \sum_{t_R \in T} z^{|t_R|} = Q(z) T(z) \]

\[\sum_{t_L \in T} |t_L| z^{|t_L|} \sum_{t_R \in T} z^{|t_R|} = z T'(z) T(z) \]

\[= 1 + 2z Q(z) T(z) + 2z^2 T'(z) T(z) \]
Expected path length of a random binary tree: full derivation

CGF.

\[Q(z) = \sum_{t \in T} ipl(t)z^{|t|} \]

Decompose from definition.

\[Q(z) = 1 + \sum_{t_L \in T} \sum_{t_R \in T} (ipl(t_L) + ipl(t_R) + |t_L| + |t_R|)z^{|t_L|+|t_R|+1} \]

\[= 2zT(z)(Q(z) + zT'(z)) \]

Solve.

\[Q(z) = \frac{2z^2 T(z)T'(z)}{1 - 2zT(z)} \]

Do some algebra (omitted)

\[zQ(z) = \frac{z}{1 - 4z} - \frac{1 - z}{\sqrt{1 - 4z}} + 1 \]

Expand.

\[Q_N \equiv [z^N]Q(z) \sim 4^N \]

Compute average internal path length.

\[\frac{Q_N}{T_N} \sim N\sqrt{\pi N} \]
Problem 2: What is the expected path length of a random BST?

\[C_{Nk} = \# \text{ permutations} \text{ resulting in a BST with } N \text{ nodes and ipl } k \]

\[N! = \# \text{ permutations} \]

\[C_N = \text{cumulated cost (total ipl)} \]

\[C_{10} = 1 \]
\[C_1 = 0 \]
\[C_1/1! = 0 \]
\[C_2/2! = 1 \]

Recall: A property of permutations.

\[C_2 = 2 \]
\[C_3 = 2 \cdot 2 + 4 \cdot 3 = 16 \]
\[C_3/3! = 2.667 \]

\[C_4 = 12 \cdot 4 + 4 \cdot 5 + 8 \cdot 6 = 74 \]
\[C_4/4! = 4.833 \]

\[C_{44} = 12 \]
\[C_{45} = 4 \]
\[C_{46} = 8 \]
Average path length in a BST built from a random permutation

\(P \) is the set of all permutations.
\(|p|\) is the length of \(p \).

ipl(\(p \)) is the ipl of the BST built from \(p \) by inserting into an initially empty tree.

\(P_N \) is the # of permutations of size \(N (N!) \).

\(C_N \) is the total ipl of BSTs built from all permutations.

Counting EGF.

\[
P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \sum_{N \geq 0} N! \frac{z^N}{N!} = \frac{1}{1 - z}
\]

Cumulative cost EGF.

\[
C(z) = \sum_{p \in P} \text{ipl}(p) \frac{z^{|p|}}{|p|!}
\]

Expected ipl of a BST built from a random permutation.

\[
\frac{N! [z^N] C(z)}{[z^N] P(z)} = \frac{N! [z^N] C(z)}{N!} = [z^N] C(z)
\]

Next: Derive a functional equation for the cumulated cost EGF.
CGF functional equation for path length in BSTs

Cumulative cost EGF.

\[
C(z) = \sum_{p \in P} ipl(p) \frac{z^{|p|}}{|p|!}
\]

|\(|p_L| + 1\) smaller \(p_L\) nodes on the left
|\(|p_R|\) nodes on the right

Counting GF.

\[
P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \frac{1}{1 - z}
\]

Perms lead to the same tree with \(|p_L| + 1\) at the root

\[
\left(\frac{|p_L| + |p_R|}{|p_L|}\right)
\]

Decompose.

\[
C(z) = \sum_{p \in P} \sum_{p \in P} \left(\frac{|p_L| + |p_R|}{|p_L|}\right) \frac{z^{|p_L| + |p_R| + 1}}{(|p_L| + |p_R| + 1)!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|)
\]

Differentiate.

\[
C'(z) = \sum_{p \in P} \sum_{p \in P} \frac{z^{|p_L|}}{|p_L|!} \frac{z^{|p_R|}}{|p_R|!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|)
\]

\[
= 2C(z)P(z) + 2zP'(z)P(z) = \frac{2C(z)}{1 - z} + \frac{2z}{(1 - z)^3}
\]

Differentiate.

\[
P'(z) = \sum_{p \in P} \frac{z^{|p| - 1}}{(|p| - 1)!} = \frac{1}{(1 - z)^2}
\]
CGF functional equation for path length in BSTs

\[C'(z) = \frac{2C(z)}{1-z} + \frac{2z}{(1-z)^3} \]

Look familiar?

Solving the Quicksort recurrence with OGFs

\[C_N = N + 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1} \]

Multiply both sides by \(N \).
\[NC_N = N(N + 1) + 2 \sum_{1 \leq k \leq N} C_{k-1} \]

Multiply by \(z^N \) and sum.
\[\sum_{N \geq 1} NC_N z^N = \sum_{N \geq 1} N(N + 1) z^N + 2 \sum_{N \geq 1} \sum_{1 \leq k \leq N} C_{k-1} z^N \]

Evaluate sums to get an ordinary differential equation
\[C'(z) = \frac{2}{(1-z)^3} + 2 \frac{C(z)}{1-z} \]

Solve the ODE.
\[(1-z)^2 C'(z) = (1-z)^2 C'(z) - 2(1-z)C(z) \]
\[= (1-z)^2 \left(\frac{C'(z)}{1-z} - \frac{C(z)}{1-z} \right) = \frac{2}{1-z} \]

Integrate.
\[C(z) = \frac{2}{(1-z)^2} \ln \frac{1}{1-z} \]

Expand.
\[C_N = [z^N] \frac{2}{(1-z)^2} \ln \frac{1}{1-z} = 2(N + 1)(H_{N+1} - 1) \]
Expected path length in BST built from a random permutation: full derivation

CGF.
\[C(z) = \sum_{p \in P} ipl(p) \frac{z^{|p|}}{|p|!} \]

Decompose.
\[C(z) = \sum_{p_L \in P} \sum_{p_R \in P} \left(\frac{|p_L| + |p_R|}{|p_L|} \right) \frac{z^{|p_L|+|p_R|+1}}{(|p_L| + |p_R| + 1)!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|) \]

Differentiate.
\[C'(z) = \sum_{p_L \in P} \sum_{p_R \in P} \frac{z^{|p_L|} z^{|p_R|}}{|p_L|! |p_R|!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|) \]

Simplify.
\[= 2C(z)P(z) + 2zP'(z)P(z) \]
\[= \frac{2C(z)}{1 - z} + \frac{2z}{(1 - z)^3} \]

Solve the ODE (see GF lecture).
\[C(z) = \frac{2}{(1 - z)^2} \ln \frac{1}{1 - z} - \frac{2z}{(1 - z)^2} \]

Expand.
\[C_N = 2(N + 1)(H_{N+1} - 1) - 2N \sim 2N \ln N \]
BST – quicksort bijection

Quicksort

- **first entry in a permutation (partitioning element)**

```
  smaller          larger
  smaller          larger
```

model: random permutation

compares: $N+1 + \#$ compares for subfiles

Average # compares for quicksort

- $= \text{average external path length of BST build from a random permutation}$
- $= \text{average internal path length} + 2N$

BST

```
  smaller than v
  larger than v
```

node corresponding to first entry in a permutation

model: random permutation

xpl: $N+1 + \text{xpl of subtrees}$
Height and other parameters

Approach works for any “additive parameter” (see text). **Height** requires a different (much more intricate) approach (see text).

Summary:

<table>
<thead>
<tr>
<th></th>
<th>typical shape</th>
<th>average path length</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>random binary tree</td>
<td></td>
<td>$\sim \sqrt{\pi N}$</td>
<td>$\sim 2\sqrt{\pi N}$</td>
</tr>
<tr>
<td>BST built from random permutation</td>
<td></td>
<td>$\sim 2 \ln N$</td>
<td>$\sim c \ln N$</td>
</tr>
</tbody>
</table>

$c \approx 4.311$
6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees
Other types of trees in combinatorics

Classic tree structures:
- The **free tree**, an acyclic connected graph.
- The **rooted tree**, a free tree with a distinguished root node.
- The **ordered tree**, a rooted tree where the order of the subtrees is significant.

Ex. 5-node trees:

- 3 free trees
- 9 rooted trees
- 14 ordered trees

Enumeration? Path length? Stay tuned for *Analytic Combinatorics*
Other types of trees in algorithmics

Variations on binary trees:
- The \textit{t-ary tree}, where each node has exactly \textit{t} children.
- The \textit{t-restricted tree}, where each node has at most \textit{t} children.
- The \textit{2-3 tree}, the method of choice in symbol-table implementations.

Enumeration? Path length? Stay tuned for \textit{Analytic Combinatorics}
An unsolved problem

Balanced trees are the method of choice for symbol tables
- Same search code as BSTs.
- Slight overhead for insertion.
- Guaranteed height $< 2\lg N$.
- Most algorithms use 2-3 or 2-3-4 tree representations.

Ex. LLRB (left-leaning red-black) trees.

Q. Path length of balanced tree built from a random permutation?

Section 3.3

a property of permutations, not trees
Balanced tree distribution

Probability that the root is of rank k in a randomly-chosen AVL tree.
An unsolved problem

Q. Path length of balanced tree built from a random permutation?

random AVL tree

LLRB tree built from random perm (empirical)
6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees
- Exercises
Exercise 6.6

Tree enumeration via the symbolic method.

Exercise 6.6 What proportion of the forests with N nodes have no trees consisting of a single node? For $N = 1, 2, 3,$ and 4, the answer is $0, 1/2, 2/5,$ and $3/7$, respectively.
Exercise 6.27

Compute the probability that a BST is perfectly balanced.
Exercises 6.43

Parameters for BSTs built from a random permutation.

Answer these questions for BSTs built from a random permutation.

Exercise 5.15 Find the average number of internal nodes in a binary tree of size \(n \) with both children internal.

Exercise 5.16 Find the average number of internal nodes in a binary tree of size \(n \) with one child internal and one child external.
Assignments for next lecture

1. Read pages 257-344 in text.

2. Run experiments to validate mathematical results.

 Experiment 1. Generate 1000 random permutations for \(N = 100, 1000, \) and 10,000 and compare the average path length and height of the generated trees with the values predicted by analysis.

 Experiment 2. *Extra credit.* Do the same for random binary trees.

3. Write up solutions to Exercises 6.6, 6.27, and 6.43.
6. Trees